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Abstract. Aedes Aegypti is the vector of several deadly diseases, in-
cluding Zika. Effective and sustainable vector control measures must be
deployed to keep A. aegypti numbers under control. The distribution of
A. Aegypti is subject to spatial and climatic constraints. Using agent-
based modeling, we model the population dynamics of A. aegypti sub-
jected to the spatial and climatic constraints of a neighborhood in the
Key West. Satellite imagery was used to identify vegetation, houses (CO2

zones) both critical to the mosquito lifecycle. The model replicates the
seasonal fluctuation of adult population sampled through field studies
and approximates the population at a high of 986 (95% CI: [979, 993])
females and 1031 (95% CI: [1024, 1039]) males in the fall and a low of
316 (95% CI: [313, 319]) females and 333 (95% CI: [330, 336]) males dur-
ing the winter. We then simulate two biological vector control strategies:
1) Wolbachia infection and 2) Release of Insects carrying a Dominant
Lethal gene (RIDL). Our results support the probability of sustained
Wolbachia infection within the population for two years after the year of
release. For the assessment of these two strategies, our approach provides
a realistic simulation environment consisting of male and female Aedes
aegypti, breeding spots, vegetation and CO2 sources.

1 Introduction

Zika, first identified in Central Africa as a sporadic epidemic disease, has grown
into a pandemic with cases reported from every continent within the span of
a year. South America is currently most heavily hit with over 4200 suspected
cases reported in Brazil itself [1]. The primary vector of the Zika virus is the
Aedes Aegypti mosquito also responsible for the spread of yellow fever, dengue,
malaria and chikungunya.

At the time of writing, the Centers for Disease Control has issued several re-
ports warning the public of the potential devastation of public health that Zika
poses in the US. Florida’s warm and humid environment, in particular, provides
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an excellent breeding ground for A. Aegypti. Public health administration de-
partments like the Florida Keys Mosquito Control District have been monitoring
and controling mosquito populations in the region. In addition to the traditional
population control methods such as destruction of breeding ground through pub-
lic cleanups, DDT/insecticide spraying, etc. two biological methods have gained
popularity in recent years. The first, the Release of Insects carrying a Dominant
Lethal gene (RIDL), involves the release of a large number of genetically engi-
neered mosquitoes into the wild [13]. RIDL uses a ‘suicidal’ gene which prevents
the offspring of the genetically modified mosquito from maturing into adulthood.
The second method, an incompatible insect technique (IIT), involves the release
of mosquitoes infected with the intracellular bacteria, Wolbachia pipentis, which
occurs naturally in insects. However at high concentrations, Wolbachia has been
proven to reduce the adult lifespan of A. aegypti by up to 50%[23].

Both vector control techniques have potential long-term difficulties despite
their ability to reduce mosquito numbers upon release. The inability of offspring
resulting from RIDL to survive into adulthood also means that the Dominant
Lethal gene will not be inherited [31]. Therefore, regular releases must be made
to maintain long-term sustainability of this approach. On the other hand, Wol-
bachia infection may transmitted from parent to child through reproduction and
remain in the population throughout generations. Yet, spatial and climatic con-
straints may limit Wolbachia-infected adults from finding mates in the wild or
result in infected females being killed off prior to ovipositioning. The produc-
tion of large volumes of RIDL or Wolbachia-infected A. aegypti may be costly.
Attempts to establish a sustained infection of Wolbachia within A. aegypti popu-
lations in the wild have been attempted [26]. Therefore, identifying the long-term
sustainability and required release volumes of mosquitoes is important.

Despite the difficulty of suppressing the mosquito population as a whole, A.
aegypti is quite vulnerable to climatic and spatial conditions on an individual
scale. In particular, the fetal/aquatic lifespan (time spent in egg, larval and
pupal stages), adult lifespan, mortality rates and probability of emergence are
highly sensitive to variations in the temperature. The Key West, despite having
a tropical climate with a yearly average temperature range of 10 ◦C , has been
shown to have a reasonable fluctuation in mosquito population throughout the
year.

In addition to climatic variations, mosquito survival is heavily dependent on
abundance of vegetation, human hosts and breeding sites. The male mosquito
depends on vegetation for food, while it is the female mosquito that feeds on
the blood of mammals. The female mosquito is attracted to hosts by CO 2
and pheromone emissions and can detect hosts from upto 30m away [10, 15].
Vegetation zones must be within reasonable proximity of host locations in order
for males to be able to reach females for mating. Finally, there must be an
abundance of breeding sites (exposed stagnant water) upon which females must
oviposition (lay eggs).

In an effort to identify the sustainability of the two vector control techniques,
we use agent-based modeling to simulate the yearly fluctuation of mosquito pop-



ulation dynamics in the Key West. A suburban neighborhood is selected and
segmented into vegetation, houses(CO2 zones) and breeding zones to capture
the spatial constraints experienced by the local mosquito population. Satellite
imagery of the neighborhood is processed to identify the exact location of these
zones. In addition to the spatial constraints, the monthly temperature variation
of the Key West is also simulated as a climatic constraint. Mosquito agents are
released into this environment and their population characteristics are observed
throughout time. After validating the yearly adult population fluctuation pro-
duced by this model, we use it to simulate and compare the two vector control
strategies mentioned.

2 Background

Modeling and simulation have been used to study environmental and animal
monitoring problems [5] [7] [3]. For the mosquito population dynamics model-
ing, there is a variety of approaches in the literature including analytical models,
differential equation models and ABMs. One of the more prominent mosquito dy-
namics models in the literature is CIMSim [14], uses dynamic life-table modeling
of life-stage durations of the aedes gonotrophic cycle, as influenced by environ-
mental conditions such as temperature and humidity. Despite its lack of spatial
properties, CIMSim has been recognized as the standard mosquito population
dynamics model by the UNFCCC (United Nations Framework Convention on
Climate Change). Other similar models include DyMSim [24], TAENI2 [30] and
the use of Markov chain modeling in [29]. A spatially explicit version of CIMSim,
Skeeter Buster is also commonly used for mosquito population estimation [22].

ABMs differ from the other models by capturing the spatial interactions
among individuals which emerge into macro scale results of small changes in in-
dividual characteristics or behaviour of the agents. Our approach employs a spa-
tial model of the A. aegypti population by integrating an ABM with geographic
information. Spatial models are used in epidemiology to study population dy-
namics or to evaluate methods for population control. Evans and Bishop [13]
propose a spatial model based on cellular automata to simulate pulsed releases
and observe the effects of different mosquito release strategies in Aedes aegypti
population control. The results of the model show the importance of release pulse
frequency, number of release sites and the threshold values for release volume.

Another spatial approach for simulating Aedes aegypti population is Sim-
PopMosq [4], an ABM of representative agents for mosquitoes, some mammals
and objects found in urban environments. SimPopMosq is used to study the ac-
tive traps as a population control strategy and includes no sterile insect agents
or techniques. The framework by Arifin et al. [5] integrates an ABM with a
geographic information system (GIS) to provide a spatial system for exploring
epidemiological landscape changes (distribution of aquatic breeding sites and
households) and their effect on spatial mosquito population distribution. Lee et
al. [21] also investigate the influence of spatial factors such as the release region
size on population control. The method uses a mathematical model to study the



relation among the location related parameters. Isidoro et al. [18] used LAIS
framework to evaluate the RIDL for Aedes aegypti population. The ABM in-
cludes independent decision-making agents for mosquitoes and pre-determined
rule based elements for environmental objects such as oviposition spots. How-
ever the model lacks important factors such as a realistic map or temperature
effects. An observation in most of these studies is the lack incorporation of male
mosquito dynamics and their requirement to travel between vegetation for nu-
trition and mates.

There are also approaches integrating the mosquito population control mod-
els with epidemic models. Deng et al. [11] proposed an ABM to simulate the
spread of dengue, the main vector of which is Aedes aegypti as well. The mo-
bility of the mosquitoes in this model are defined by a utility function, which
is affected by the population, wind and landscape features. However, the model
lacks a granular spatial discretization and only a small number of agents are
used. Moulay and Pigné [25] studied Chikungunya epidemic with a metapopu-
lation network model representing both mosquito and human dynamics on an
island. The model is created by considering both the density and mobility of
populations and their effects on the transmission of the disease.

3 Methodology

We model the population dynamics of mosquitoes in an agent-based model im-
plemented in RePast Simphony [27] consisting of agents embodying the behavior
of A. aegypti and feeding and breeding off of designated zones in a geographical
environment with monthly changes in average temperature. The distribution of
the zones provided spatial constraints on the total population while changing
temperature applied climatic constraints. Zones were either locations with CO2

(human hosts), vegetation or breeding sites. The distribution of these zones were
determined using geographical analysis of a suburban neighborhood in Key West,
Florida. The monthly average temperature in Key West was obtained from [2].

3.1 Life Stages, Processes, Circadian Rhythm and Behavior Modes

A. aegypti has four life stages and undergoes metamorphosis between these
stages. The first three life stages (egg, larva and pupa) are spent in water while
the final stage (adult) is spent as an airborne insect. Adult females feed on blood
of mammal hosts, while males gain nutrition from vegetation. Female mosquitoes
are attracted to hosts through CO2 and pheromones upon which the perform a
process known as klinotaxis to reach their host. The female A. aegypti prefers
to lay eggs closer to urban areas and is considered a domestic pest.

The life stages of A. aegypti are simulated in our model. The lifecycle of
the simulated mosquito agents is described in Fig. 1. For the purpose of our
study, the egg, larva, and pupa stages were considered as a single stage, FETAL,
and considered to be inanimate. During the FETAL stage the mosquito remains
within the confines of the breeding site. A FETAL has a probability of dying MF



(mortality rate, probability of maturing: PM = 1−MF ). Once the FETAL agent
has survived for Df days, it emerges into an adult. Emergence is probabilistic
and there is ME chance of death during emergence (probability of emergence:
PE = 1 −ME).

Fig. 1. Lifecycle of the mosquito agent.

Emerged ADULTs live for DA days. ADULTs may die during their life pro-
cesses or due to old age at a rate of MA. New FETALs are created through
reproduction with a probability of PR. PR depends on an individual adults abil-
ity to find food sources, feed, seek mates, mate successfully, seek breeding zones
and oviposition. These processes are constrained by the spatial distribution of
the zones and restriction of DA due to temperature. Further, mating success
is probabilistic (probability of successful mating: pm). Adult females may be
killed by human hosts while feeding (daily probability of female being killed
by human host: ph). MA and PR, are therefore, subject to various factors and
highly variable depending on the individual mosquito’s sex, location in relation
to other mosquitoes, location in relation to zones and the temperature of the
environment. However, precalculation of MA and PR are not required due to the
computational nature of agent-based modeling.

In our model, all adult mosquitoes emerge from the FETAL process into the
FOOD SEEKING process. As shown in Figure 2, when in range of an appropri-
ate food source, the agent switches to the FOOD ENCOUNTERED process. The
female mosquito searches for blood meals by seeking out CO2 sources within the
environment, while males seek out vegetation zones. After a period of feeding,
the mosquitoes enter the mating phases. The female mosquito agents transition
to RESTING until fertilization, upon which she enters into the OVIPOSITION-



ING phase. Meanwhile, male mosquitoes enter the MATING phase and seek
out potential mates, until their energy is depleted upon which they enter the
RESTING phase. This completes the daily rhythm of the mosquito.

There are certain conditions of satisfaction for the mosquito agents to transi-
tion from one process to another as described in Figure 2. In order for a mosquito
to enter into any of the processes described above other than the FETAL pro-
cess, it must be in the ADULT phase. In order for a female to produce eggs, it
must have enough energy or be fed. To enter OVIPOSITIONING, the female
must also be fertilized by a male mate.

Fig. 2. State diagram for the adult mosquito agent.

The adult mosquito agents in the model follow a daily rhythmic behavior de-
pending on their current state. A. aegypti circadian rhythms reported by Chadee
[8] demonstrated that blood feeding, oviposition, sugar feeding and copulation
occurred mostly between 06-09 hours and between 16-18 hours. The mosquitoes
rest for the remaining time of the day except atypical biting. Hence, the daily
time was partitioned into eight equal segments in our model. Following the infor-
mation given by Chadee [8], ovipositioning was allowed during the second and
fifth segments of the day while feeding was allowed during the second, third,
fifth and sixth segments of the day.

Climatic constraints on mosquitoes are considered to occur through varying
monthly temperature. Field studies of A. aegypti in the wild and laboratory
experiments have established the relationships of average temperature and mor-
tality rates, probability of adult emergence from pupa and life stage durations.
There are several studies in the literature [32, 6], which have fit mathematical
models relating aquatic/fetal mortality, adult mortality, fetal duration, adult du-
ration and probability of emergence with temperature. Accordingly the model
allows for temperature dependency of several parameters effecting the mosquito
lifecycle including FETAL and ADULT mortality rates and durations and ovipo-
sition rate.



3.2 Geographical Environment

The simulations were run on a suburban neighborhood (Lat: -81.78095, Lon:
24.55350) in the Key West, FL. An area of 29584 m2 was simulated consisting
of two blocks of housing. Satellite imagery was obtained through Google Earth
and processed using QGIS (Fig. 3(top-left)). After geomapping of the satellite
image and noise cancelation, the image was converted to grayscale and segmented
through a k-means unsupervised learning algorithm searching for two classes
by pixel intensity (Fig. 3(top-right)). The resulting polygons were then overlain
with a regular grid of points. Each point having 10m spacing between them. The
points were then classified according to which class of polygon they intersected on
the map image. The result was a representation of the distribution of vegetation
zones and urban areas in this neighborhood (Fig. 3(bottom-left)).

Fig. 3. Satellite imagery of the suburban neighborhood simulated in the study being
processed and converted to zones simulation in RePast.

The point layer was then imported into Repast as an ESRI shapefile. Each
point was then made the center of a circular vegetation zone or CO2 source with
radius (RC) or (RV ), respectively.

The prevalence of breeding zones depended on the house index (breeding
sites per house per week) in the region. The average house index as reported by



FKMCD was approximately 20% in 2010[12, 20]. Accordingly, 20% of the CO2

zones were, randomly, also designated as breeding zones with radius (RB). An
example of the distribution of zones within the simulated region is shown in (Fig.
3)(bottom-right).

3.3 Vector Control Strategies

Superinfection of mosquito populations in the wild with the naturally occurring
intracellular bacteria, Wolbachia (also referred to as Incompatible Insect Tech-
nique (IIT)) result in Cytoplasmic Incompatibility. Crosses between infected
males and uninfected females result in no offspring and has been used in sup-
pression of mosquito populations in the wild [33]. Most pathogens transmitted
by mosquitoes require a development period before they can be transmitted to a
human host [23]. The time period from pathogen ingestion to potential infectiv-
ity, the extrinsic incubation period (EIP), is about 10 days for Zika. Wolbachia
has been shown to reduce the lifespan of A. aegypti by upto 50% [23]. Reduced
life time of adult female mosquitoes leads to a reduction in the probability of
adult female mosquitoes biting humans and resultantly mitigates the transmis-
sion of vector-borne disease such as Zika. Sustained Wolbachia infection has been
induced in wild mosquito populations by releasing infected females (crosses be-
tween infected females and uninfected or infected males results in Wolbachia
infected offspring) [19, 17, 23].

On the other hand, RIDL depends on the artificial genetic alteration of the
mosquito to become dependent on tetracycline. Mosquitoes reared in the labora-
tory are provided on tetracycline and then released into the wild. The resulting
offspring die before reaching adulthood due to the absence of tetracycline in
the wild. RIDL mosquitoes are usually male, to avoid increasing human-biting
mosquitoes by releasing females [16]. Further, unlike Wolbachia infection, female
release is unnecessary since a sustained introduction of RIDL cannot be main-
tained as all offspring are killed. Potential disadvantages of RIDL have been
discussed in [31]

Mosquito agents in the model could be infected with Wolbachia. Mating
between uninfected females and infected males results in DA = 0 for all offspring.
Mating between infected females and uninfected/infected males results in all
offspring being infected with Wolbachia. DA of these offspring will be halved.

Mosquito agents may carry the RIDL gene. Only released RIDL mosquitoes
will be able to survive in the environment as adults. All children resulting from
a RIDL parent will inherit RIDL and set DA = 0. Finally, for RIDLs pm = 0.5
as reported in [31].

4 Experiments

The agent-based model was used to estimate the Aedes aegypti population in
the Key West. The monthly population flucuation matched that shown in catch
rates from the FKMCD [12, 20]. Populations were lowest during late winter and



highest during the summer and late Fall months. The model was then used
to evaluate the two control strategies (RIDL and Wolbachia infection) over a
period of three years. For each experiment, the simulation was allowed to run
for 2 simulation years prior to data collection, in order to allow the agents to fit
the constraint patterns of the environment. Data collection was performed after
the 2nd simulation year and performed for 3 simulation years. FKMCD [12, 20]
findings indicate the mean maximum of Aedes Aegypti caught in traps set up
near households is 20 per trap per night. Hence, our simulations were initialized
with 20 larvae in each breeding site. Values of the other parameters used in all
simulation experiments and their sources are listed in table 1.

Table 1. Parameters used in the model (T : Monthly Temperature)

Parameter Definition V alue Source

spd displacement speed 0.5 - 1 m/s [4, 10]
Df1 Mean duration of egg stage f(T ) [28]
Df2 Mean duration of larval and pupal stages f(T ) [32]
DF Mean duration of FETAL stage Df1 + Df2

DA Mean duration of ADULT stage f(T ) [32]
MF FETAL mortality rate 0.3 [32]
ml Probability of successful emergence 0.3 [32]
rc Detection range for CO2 zones 30 m [4, 10]
rv Detection range for vegetation zones 30 m [4, 10]
rv Detection range for breeding zones 30 m [4, 10]
rm Detection range for mates 30 m [4, 10]
rm Number of mates per male per day 5 [9]
rm Probability of successful mating 0.7 [4]
rm Number of times a female can lay eggs in one lifetime 5 [9]
rm Eggs laid in one oviposition 63 [13]
rm Duration of one oviposition 3-4 days [13]
dw ADULT duration decrease due to Wolbachia 50% [23]
dl ADULT duration decrease due to lethal gene 100% [31]
dl Mating success of RIDL males 50% [31]

4.1 Population Estimation

Using the model described above we were able to make estimations on the Aedes
aegypti population in the Key West neighborhood considered. It was seen that
the adult populations closely followed the monthly temperature fluctuations
(Figure 4). As shown in figures 5 and 6, adult populations were highest dur-
ing October and lowest during March. The male population slightly exceeded
the female population. During October, the mean count of females was 986 (95%



Fig. 4. Monthly temperature fluctuation over three years

Fig. 5. Simulation results for female adult population over three years

Fig. 6. Simulation results for male adult population over three years



CI: [979, 993]) and the mean count of males was 1031 (95% CI: [1024, 1039]). In
March, the mean count of females was 316 (95% CI: [313, 319]) and the mean
count of males was 333 (95% CI: [330, 336]).

4.2 Simulating Vector Control Strategies

We adopted vector control strategies from field trials for both the Wolbachia
technique and RIDL. Attempts have been made to establish a sustained Wol-
bachia infection in the Aedes aegypti population in Machans Beach, Australia
[26]. We simulated the same release quantities per urban zone in our model on
the Key West, to reflect the release quantities used in the field trial. This re-
sulted in two releases being simulating. The first release consisted of 253 males
and females each, weekly, over a period of 15 weeks. In the second release 138
males were released weekly, over a period of 10 weeks. Releases were performed
at every fourth urban zone (as in the field trials) and initiated in the first week
of April. A total of 8970 adults were released.

The release strategy for for RIDL was adopted from field trials conducted in
the Cayman Islands [16]. To allow for comparison a total of 8970 adults were
released over 25 weeks in each simulation run. 368 males were released over the
first 24 weeks and 138 in the last week. Again releases were performed at every
fourth urban zone.

For both the Wolbachia and RIDL cases, data was aggregated over 90 runs.
As release periods for both cases was 25 weeks, the final release was on the first
week of October in both cases. For the purpose of this study, we observed the

Fig. 7. Simulation results for the number of adults with Wolbachia infection over three
years



Fig. 8. Percentage of simulation runs which sustained wolbachia infection over the
three year period

prevalence of Wolbachia infected adults and adults carrying the dominant lethal
gene, during and after the release period, for each case. Figure 7 demonstrates
the aggregate abundance of Wolbachia infected adults within the population.
It can be seen that Wolbachia infection remained within the population even
when the total mosquito population dropped during the colder months. As seen
in figure 8 around 11% of the runs did manage to sustain Wolbachia infection
within the population for 2 years after the release period. As seen in figure 9,
the number of mosquitoes carrying the dominant lethal gene dropped back to
zero as soon as releases were discontinued and the released generation had died
out.

5 Conclusion

We have designed an agent-based model of the mosquito population in the Key
West, Florida in an effort to address the control of the Zika pandemic. The
primary vector of Zika, Aedes aegypti was modeled on a geographical space
representing a suburban neighborhood. Satellite imagery was used to capture the
spatial distribution of households (CO2 zones), vegetation zones and breeding
sites. Additionally, the monthly variation in temperature in the Key West was
simulated. Using these spatial and climatic constraints the annual cycle of the
mosquito population was replicated by the model to match trends demonstrated
by weekly catch rates reported in field studies. It was shown that the spatial and
climatic constraints in the Key West allowed for a maximum of approximately
986 (95% CI: [979, 993]) females and 1031 (95% CI: [1024, 1039])females in the
late Fall, while in the late winter the population remained at a low of 316 (95%
CI: [313, 319]) females and 333 (95% CI: [330, 336]) males.



Fig. 9. Simulation results for the number of adults carrying the dominant lethal gene
over three years

Two vector control strategies were simulated using the described ABM. The
first strategy, the release of Wolbachia infected mosquitoes, involved releasing
male and female mosquitoes with high levels of Wolbachia infection. The release
strategy, including release quantities, ratios and frequency, followed a field trial
performed in Machans Beach, Australia [26]. Infected males that mated with
uninfected females would result in dead offspring, while infected females would
produced offspring with Wolbachia infection.

The second strategy, Release of Insects carrying a Dominant Lethal gene
(RIDL), involved releasing males that would produce offspring that could not
survive into adulthood. If these males competed successfully with wild males for
mates, then the population would reduce as a result. The RIDL release strategy
followed a field trial performed in the Cayman Islands [16]. The total volume
of RIDL males released was equal to the total Wolbachia infected mosquitoes
released to allow for comparison.

It was observed that Wolbachia infection could be established within a pop-
ulation of Aedes aegypti in the Key West. However, the low probability of es-
tablishing sustained infection (approximately 11%) suggested that infection was
highly susceptible to uncertainty of the environment. One of the major factors
of uncertainty in the model was the spatial orientation of the breeding sites.
Therefore, there is evidence to believe that the spatial orientation of the breed-
ing sites has an impact on where releases must be performed in order to maintain
Wolbachia infection within the population. Similar observations have been made
in the field [26], however, further analysis must be performed in order to confirm
this conclusion.



Contrastingly, the model also demonstrated the inability of the RIDL tech-
nique to be established within the population. This result is expected as the
dominant lethal gene is not inherited into future generations due to the death
of all progeny of the released mosquitoes.

Finally, we have shown that this model can be used to simulate what-if
scenarios and experiment with the release volumes and frequencies of vector
control strategies for A. aegypti. The spatial and climatic constraints captured
in this model allow it to closely represent the distribution of A. aegypti in Key
West and the same technique can be applied for any geographical location.
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