Effects of Module Encapsulation in Repetitively
Modular Genotypes on the Search Space

Ivan L. Garibay'2, Ozlem O. Garibay'2, and Annie S. Wu!

! University of Central Florida, School of Computer Science,
P.O. Box 162362, Orlando, FL 32816-2362, USA,
{igaribay,ozlem,aswu}@cs.ucf.edu,

WWW home page: http://ivan.research.ucf.edu
2 University of Central Florida, Office of Research
Orlando Tech Center/ Research Park
12443 Research Parkway Orlando, FL 32826, USA.

Abstract. We introduce the concept of modularity-preserving repre-
sentations. If a representation is modularity-preserving, the existence
of modularity in the problem space is translated into a corresponding
modularity in the search space. This kind of representation allows us to
analyze the impact of modularity at the genomic level. We investigate
the question of what constitutes a module at the genomic level of evo-
lutionary search and provide a static analysis of how to identify good
and bad modules based on their ability to reduce the search space, thus,
biasing the search space towards a solution. We also prove, under a set of
assumptions, that the systematic encapsulation of lower order modules
into higher order modules does not change the size or bias of a search
space and that this process produces a hierarchy of equivalent search
spaces.

1 Introduction

The success of evolutionary algorithms for a given problem is heavily affected by
the representation used [1-3]. The task of designing a good representation is, at
this point, more an art than a science. In this paper, we analyze the effects that
the choice of representation primitives and the encapsulation of primitives into
modules can have on the size of a search space and bias towards a solution. We
focus on two questions. Does the encapsulation and replacement of lower level
modules or primitives with higher level counterparts, by itself, benefit evolu-
tionary search? Under what circumstances does the encapsulation of lower level
modules or primitives into higher level modules benefit evolutionary search and
how? We offer a static mathematical analysis as well as experimental results
to shed light on these two issues. We find that replacing lower level elements
with encapsulated higher level counterparts, by itself, has no effect on the size
or bias of the search space. This result is, in essence, a kind of No Free Lunch
theorem [4] for genomic module encapsulation. We also find that the process
of encapsulating primitives into modules has two static effects. It enlarges the

search space, because it introduces a new element into the search space alpha-
bet; and it biases this extended search space towards solutions that contain the
encapsulated primitives. As a result, there is a trade-off between the gains and
losses of introducing a new module in terms of search space size and bias. We
provide a closed form expression, under certain assumptions, whether the cre-
ation of a module will be beneficial in terms of the size of the resulting search
space size. We show that this bias is governed by the module size and by how
many times the module appears in the solution string.

2 Modularity

The concept of modularity has been studied extensively in complex systems and
also in evolutionary computation. Recently, issues such improving the “inno-
vativeness” and the scalability of evolutionary search have attracted renewed
interest to the study of modularity in the evolutionary computation community.
For instance see [5—7]. From our perspective, modularity implies not only the hi-
erarchical organization of components from one level of complexity to the next,
but also the ability to freely reuse components. In Evolutionary Computation,
various techniques have been used to incorporate modularity into the evolu-
tionary search, for example, compress and expand operators [8], automatically
defined functions [9], speciation [10], repetitive modularity [11,12], and coevo-
lutionary methods [13], to name a few. All of these techniques seek to identify
“good” modules for a given problem. In contrast with module definitions based
on fitness [14,15,13], we study location-independent genomic modularity. For
us, a genomic module is simply a pattern of consecutive genomic primitives or
lower-level genomic modules occurring at any location in a genome.

We base our study of modular genomes on the following assumptions: first,
that the class of problems with modular solutions is of interest; and second,
that there exist representations that correlate modularity in solutions with cor-
responding modularity in genomes and that such representations can be found for
any repetitively modular problem. We call this kind of representations modularity-
preserving representations(MPR) and we call the second assumption the Modula-
rity-preserving representation hypothesis. For the reminder of this paper, we as-
sume that this hypothesis is true.

3 Mathematical Analysis

We introduce the following definitions using standard set theory and formal
languages notation, i.e. see [16].
3.1 Modular Search Spaces

Primitives are the atomic components of problem representation that are used
to encode a candidate solution. A candidate solution, also called an individual,

may consist of both primitives and modules. Modules are substrings of interest.
A module may contain two kinds of symbols: primitives and previously defined
modules. The search space of a problem is the space of all possible candidate
solutions. The structure of a search space is determined by its alphabet which
can consist of both primitive and module symbols, and by the length of its
individuals. The elements of the search space are all possible strings of a given
length over the search space alphabet.

Definition 1 (Search space). A search space S is a 3-tuple:
S=(X,I,R)

Where, ¥ C PUM is the search space alphabet; P is a set of primitive symbols,
and M is a set of module symbols; 1 is the length of the individuals; and R is
the set of module defining rules.

Definition 2 (Module defining rules). For a given search space S = (¥, R),
if r; € R then r; is of the form:

ri:Mi—Hui

Where, M; € M is the module name; w; € {P U {My, Ms, ..., M;_1}}* is the
module defining string; and |w;| < 1, since we consider modules to be substrings
of candidate solutions.

There is one defining rule in R for each module symbol in M, hence |R| = |[M].
Note that rules are hierarchically defined in terms of primitives and previously
defined modules; hence, circularity in definitions is not possible. Let us define a
module size as the length of its defining string |w;|. A module is of order zero
if its defining substring consist solely of primitives, and it is of order n if its
defining substring consist of primitives and symbols naming modules of at most
order n — 1.

Definition 3 (Search space elements). The elements of the search space S,
denoted by L(S), are all strings of length | over the search space alphabet X':

L(S)={e|leec Z*Ale| =1}

Since X can potentially contain primitives as well as modules, individuals can
be expanded using the module definitions in R. An individual is expanded by
rewriting module names by module definitions until the individual consist of a
string of only primitives.

Definition 4 (expanded form). Let e € L(S) be an element of search space
S =(X,l,R). We define the expanded form of element e as:

€exp = FBrpandy (e)

Where Ezpandy is the expanding function for module definitions R. The expand-
ing function applies the rewriting rules in R to its input e until a string solely
over P is obtained, Expandy outputs that string. In this case, we said that eqqp
has been derived from e using rewriting rules R.

Notice that e € X* and |e| = [, while ec,p, € P* and |ecap| > . Also, if e does
not contain any module symbols, then e = eqgp.

Definition 5 (expanded search space). Let S = (X,l,R) be a search space
and L(S) its elements. We define the expanded search space Leyp(S) as follows:

Lean(S) = {9 | g = Eapands(e) A e € L(S)}

Leyp(S) is the set of all individuals in the search space S in their expanded form.
Elements of L.,,(S) are variable length strings over P. It is easy to show that
the length of the expanded individuals, ., is bounded by: [< ¢y < [IMI+1,

3.2 Search Space Size and Bias

The size of a search space & = (X,1,R), denoted by |L(S)|, is |L(S)| = |Z|".
Notice that it is possible for two different individuals to expand to the same
string of primitives, therefore, |Leyp(S)| < |L(S)|. As we are interested in the
bias produced by module definitions, we measure the bias of a search space using
the expanded form. If the expanded search space Legp(S) contains all possible
strings of primitives of a given length ¢, then we said that the search space has no
structural bias for length ¢ because there are no unreachable strings of primitives
of length t. The search space is structurally biased otherwise. Note that even in
an structurally unbiased search space where all strings of primitives are reach-
able, some strings of primitives may have multiple derivations and therefore be
preferred. We call this later case a modularly biased search space.

Definition 6 (Search space bias). For a given search space S = (X,1,R), if
Lewp(S) D {elee P Ale| =t}

is true, we say that S is not structurally biased for length t, or simply that it is
not structurally biased in the case that t =1. S is structurally biased otherwise.

A set of module definition rules R are complete-P with respect to a set of prim-
itives P it the rules are able to derive every string of a given length ¢ over the
alphabet of primitives P, starting from strings containing only module names
from R.

Definition 7 (Complete-P). Lets R and P be a set of module definition rules
and a set of primitive symbols respectively. We say that R is complete-P with
respect to P for a given length t if the following expression holds true:

{Ezpandy(e) | e € M*} D {e|e€ P"Ale| =t}
Where M is the set of all module names from R

% For instance, the search space S = (¥ = {1,0,4},1 =8, R = {A — 11}) is struc-
turally unbiased since all strings of primitives of length 8 can be reached; however
it is modularly biased since, for instance, the string “00000000” can only be de-
rived from “00000000” and the string “111111111” can be derived from “A1111111”,
“TA1111117, “11A11111”, etc.

Definition 8 (Complete m-module set). R, is the complete m-module set

of Q iff:
Re={(M; - w)|w € Q" A|lw| =mAiis a unique index forw}

Where, Q is an arbitrary set of symbols, R. is a set of module defining rules, m
is the size of all modules in R., and i is an arbitrary index for strings w over

Q.

Since there is one module defined on R, per each string of size m over @), we
have [R.| = [Q|™

Lemma 1. Lets R and P be a set of module definition rules and a set of prim-
itive symbols respectively. The following two expressions are true:

(R D complete m-module set of P) — (R is complete-P) (1)
(R D complete m-module set of a complete-P set) — (R is complete-P) (2)

Lemma 2. Let S = (X1, R) be a search space. If S is not structurally biased
then one of the following is true:

1. ¥ O P, or
2. X D B, where B is the set of module names of a complete-P set of rules with
respect to P.

It is not difficult to prove Lemmas 1 and 2

3.3 Search Space Altering Operations

Module encapsulation or module creation is the process of naming a substring of
interest with a new alphabet symbol. This process changes the structure of the
search space by adding a new module symbol to the alphabet.

Definition 9 (Encapsulation). Module encapsulation, £ : § x rp — S is
defined as follows:

5(S,Mk — wk) = (EU {Mk},l,RU {Mk — wk}>

Where, S = (X,1,R) is a search space, My — wy, is the rewriting rule defining
the new module to be encapsulated, My, is a new module symbol, wy is a string
over X, and |wg| < L.

Strict-encapsulation of a search space S is the process of creating all possible
modules of a given size m over the current search space alphabet Y and then
replacing the current alphabet with the newly created module names. This pro-
cess evidently changes the structure of the search space by replacing completely
the search space alphabet and the module defining rules. Notice that there are
| X|™ modules of size m that can be created over X'. The new individual length
is I/m, since individuals consist of only new modules of size m.

Definition 10 (Strict-encapsulation). Strict-encapsulation, & : S — S is
defined as follows:

&£s(8) = (X, 1/m, R')

Where, S = (X,1,R) is a search space; R' is a complete m-module set for X ;
and X' is the set of newly created module symbols from R'.

Lemma 3. Let S; = (X1,11,R1) and So = (Xo,1l2,Ra) be search spaces such
that 82 = 85(81), then |L(81)| = |L(82)|

Proof. We know that |L(S;)| = 1 and |L(S2)| = | X2|™2. Since Sa = E4(S1) we

have that |S5| = |Z1|™ and I, = l; /m. Therefore |5|" = |Z;|™/™ = |3,
a

Lemma 4. Let Sy and S be search spaces such that Sa = E5(S1), then
(not structurally biased S1) — (not structurally biased Ss).

Proof. Let 81 = (X1,11,R1) and Sy = (X5, 12, R2) be search spaces. We need to
prove that:

(Leap(S1) D {e|e € Pi* Ale| =11}) = (Leap(S2) D {e | e € P2" Ale| =12})

Let us assume that S; is not structurally biased. We will prove that for that
case S» is also not structurally biased. According to Lemma 2, we would need
to consider two cases:

Case 1: X1 D P hence ¥y = {P UU} for some possibly empty set U. Since
Sy = E5(S1), R2 is a complete m-module set of Xy = {PUU}. Tt is easy to show
that for this case:

R DO complete m-module set of Py
by Lemma 1 then, R is complete-P. Therefore, Ss is also not structurally biased.
Case 2: Xy D B, where B is complete-P. The prove is analogous to Case 1, but

we need to use the second part of Lemma 1. O

Lemma 5. Lets S and Ss be search spaces such that Sa = E5(S1), then
(structurally biased S1) — (structurally biased Sz).

The proof for Lemma 5 is analogous to that of Lemma 4 and omitted for space
constrains. Further details can be found at [17].

3.4 Hierarchy of Modular Search Spaces

Theorem 1. Strictly-encapsulating lower-order modules into a complete set of
higher-order modules does not change the search space size or structural bias.

Proof. Lets S; and Sy be two search spaces such that Sy = £5(S1). We need to
prove that

|L(S1)| = [L(S2)]
structurally bias S — structurally bias Sa

not structurally bias Sy — not structurally bias Sz
All three statements have been proved in Lemmas 3, 4, and 5. O

Continuously strictly-encapsulating a search space produces a hierarchy of search
spaces. At the bottom of this hierarchy we have a search space with individuals of
size [and trivial modules of size one (I primitives). As we move up the hierarchy,
we have search spaces with more modules and larger module sizes. At the top of
this hierarchy, we have individuals of size one consisting of only one module of
size [. We call this type of hierarchy a modularity representation pyramid for S.

Definition 11 (Modularity representation pyramid). Let S be a search
space with only primitives. Let us recursively define the modularity representation
pyramid, A = {ag,a1,...}, for S as:

CLOZS

aiy1 = Es(aq)

The recursion terminates when the individual length for a given a; is equal to
one (the individuals can not be further encapsulated into modules).

Corollary 1. Let S be a search space with only primitives and A be a modularity
representation pyramid for S. Then the following is true for all levels of the
pyramid:

1. all search spaces are of equal size: X
2. all search spaces are structurally unbiased.

Proof. Base case: S is trivially structurally unbiased and of size X!. Recursive
step: by the previous theorem, a;;; and a; are of the same size and if a; is
structurally unbiased so does a; 1. a

4 What Makes Module Encapsulation Advantageous?

Replacing lower level modules with higher level modules does not produce any
advantage unless there is some rationale for pruning some of the “undesired”
higher level modules, hence reducing the search space. We define ”good” modules
to be modules that are present in a solution and ”bad” modules to be modules
that are not present in a solution. In this section, we analyze the effect on search
space size of encapsulating good modules versus bad modules. Let us assume that
the optimal solution is known. Consequently, the type and number of modules in
the optimal solution is also known. Furthermore, we assume that the length of

the individuals in each search space equals the shortest optimal individual length.
Based on these assumptions, we can derive the relationship that must be satisfied
in order for encapsulation to be beneficial to a search. Let S; = (¥,l1,R1) and
Sy = (X5, 15, R2) be search spaces such that Ss is the product of encapsulating
the module M into search space Si; hence, Sy = £(S1,(M — w)). Let the
optimal solution for search space S; be w;. Let wg contain z copies of the string
w which defines module M. According to Definition 9, we have Xy = Xy U{M},
therefore:

[o] = [Z] +1 (3)

Because the optimal solution can be expressed in terms of module (M — w) and
because the optimal solution contains z copies of the module defining string w,
then:

=1y — (| - 1) (4)

In order for the encapsulation of module (M — w) to produce an advantage in
terms of search space size, we need:

(Search space size with M) < (Search space size without M)
Which it is:

|L(S>)| < |L(S1)]
| 5] < |5

Using (3) and (4) on the previous equation we have:
(12 +)" <z (5)

where,

C=z(wl-1)

is a constant which depends only on the modular properties of the solution string
ws. Applying logarithms to both sides of (5) and rearranging the terms gives us:

In(1+1/|%4])

C>1
= (|2 + 1)

(6)

Therefore, there are three possible outcomes when encapsulating a good module.
If (6) is satisfied as an inequality, we predict an advantageous reduction of search
space size when the module (M — w) is encapsulated. If it is satisfied as an
equality, we predict no advantage or disadvantage because the search spaces
will be of equal size. If (6) is not satisfied, then the encapsulation of module
(M — w) will be disadvantageous since it will result in a larger search space. On
the other hand, encapsulating a bad module is always disadvantageous. Since a
bad module is not present in the optimal solution the value of the constant is
C = 0, which renders (6) unsatisfiable.

Alphabet size|Module length|Solution length
Level 1 2 1 8
Level 2 4 2 4
Level 3 16 4 2
Level 4 256 8 1

Table 1. Details for the modularity representation pyramid A; used in experiment 1.

5 Experimental Analysis

5.1 Objectives

In Sects. 3 and 4, we present a simple analysis of the effects of module encapsu-
lation on the size and bias of a search space. We next present two experiments
to empirically verify our conclusions. In both experiments, we evaluate the per-
formance of a GA on a modular space in terms of the best fitness in the final
generation. Performance evaluation is averaged over 40 runs. As our analyses
focus only on the search space and do not take into account the characteristics
or dynamics of any search algorithm—such as the GA that we use—, we expect
only qualitative verification of our conclusions from the empirical tests.

The first experiment is an empirical validation of Theorem 1. We select a
small modularity representation pyramid A; for S; = (¥ = {0,1},1 =8, R = {}).
Each level of the pyramid is described in Table 1. Although GA dynamics at
various levels of the search space may affect results to some degree. We expect
to see a qualitative validation of Theorem 1 in the form of roughly comparable
performance at all pyramid levels. In the second experiment, we attempt to val-
idate (6) by comparing theoretically and experimentally obtained values of C.
We follow the analysis in Sect. 4 using the following values: search space & =
(X, ={0,1},1; = 64, Ry = {}), module to be encapsulated M — 00010111, op-
timal solution wy contain z, for z € {0,2,3,4,5,6}, copies of the string 00010111.
We use (4) to calculate the value of the constant C' = z(|00010111| — 1) = 7z.
Equation 6 gives us the condition that must be satisfied for encapsulation to
be beneficial: C' > 64% = 23.62. From these equations, we can calculate
the theoretical threshold value z > 3.37. Therefore, according to the analysis
in Sect. 4, a target solution must contain more than 3 copies of 00010111 for
the encapsulation of module M — 00010111 to be beneficial. If the target so-
lution contains more than three copies of the module M, then we expect the
search space size to decrease and performance to improve. If the target solution
contains fewer than three copies of M then we expect the search space size to
increase and the performance to degrade.

5.2 Settings

For all experiments we use a modular version of a genetic algorithm (GA) [18,19]
called the modular genetic algorithm (MGA) [11]. MGA is a simple GA with the

Best fitness

ability to encapsulate modules as described in Sect. 3. MGA genetic operators
are analogous to GA operators, but work with strings over alphabets of any size.
The following parameter settings are common for all experiments: the crossover
type is two-point, the crossover rate is 0.9, the mutation rate is 0.005, selection
type is fitness proportional, population sizes of 50 for the first and 500 for the
second set of experiments, and the number of generations is 500. We perform 40
trials for all experiments and report average values with their 95% confidence
intervals.

5.3 Results

MGA on four-level modularity representation pyramid A1. MGA on four-level modularity representation pyramid AL: detail

[T

06

Best fitness

04

Al level 1
Al level 2 -------
Allevel 3 -
Al level 4

02

0 50 100 150 200 250 300 350 400 450 500 0.9

. . . .
Generations B level 1 level 2 level 3 level 4

Fig.1. MGA on random pattern matching for each level of the modularity represen-
tation pyramid Ai: (A) best fitness by generation averaged over 40 runs, (B) fitness of
best solution found averaged over 40 runs and 95% confidence intervals. This empirical
result validates Theorem 1 since the performance is comparable for all levels.

Figure 1 shows the results from the first experiment. Figure 1(A) shows the
best fitness for each generation averaged over 40 runs. Figure 1(B) shows the
fitness of the best solution found averaged over 40 runs and 95% confidence in-
tervals. For all four levels of the hierarchy of modular search spaces defined by
the pyramid A; we obtain comparable performance as predicted by Theorem 1.
Figure 2 shows the results from the second experiment. We compare the MGA
with a traditional GA on a pattern matching problem. The goal is to generate a
target solution w, containing x copies of module M. Figure 2 shows the fitness
of the best solution found averaged over 40 runs and 95% confidence intervals.
These results indicate that GA performance is insensitive to the number of mod-
ules M contained in a solution. MGA performance with module M encapsulated
is linearly correlated with z. We observe that the experimental threshold for x
is approximately x > 6. This experiment validates qualitatively our analysis of
what makes the encapsulation of a module advantageous. For the case z = 0,
no good module is defined, encapsulation is disadvantageous, and a GA outper-
forms the MGA. For the cases of z = 2,3,4,5 there is a good module defined

GA vs MGA: target contains x modules (x=0,2,3,4,5,6)

T T T T T T
1r Ed B
I I I I I I
0.95 Ed B
8 0.9
- B
8 T
o
0.85 | B
1
0.8 B
I
0.75 L L L L L L
o o NN @ ™ < < w o ©o
[1 1 1 1 [1l 1l 1l 1l 1 1
x x x x x x x x x x x x
< < < < < < < < < < < <
[ONO] [ORNO] [GRNO] o QO [ONO] [ORNO]
= = = = = =

Fig.2. MGA -vs- GA on pattern matching for target solution ws containing = €
{0,2,3,4,5,6} copies of module M: Fitness of best solution found averaged over 40
runs and 95% confidence intervals.

but the experimental threshold has not been reached; therefore, encapsulation
remains disadvantageous. Finally, for x = 6, there is a good module defined,
the threshold has been met, and encapsulation in this case is advantageous—the
MGA outperforms a traditional GA.

6 Conclusions

In this paper, we investigate the effects of module encapsulation in repetitively
modular genomes on the search space size and bias. We introduce the con-
cept of modularity-preserving representations. If a representation is modularity-
preserving, the existence of modularity in the problem space is translated into a
corresponding modularity in the search space. We hypothesize that such repre-
sentations can be found for any given modular problem, which allows us study
the impact of modularity at the genomic level. In Sect. 1 we pose two questions
to focus our work. We now discuss our conclusions with respect to those ques-
tions:

1. Does the encapsulation and replacement of lower level modules or primitives
with higher level counterparts, by itself, benefit evolutionary search?

We prove, under a set of assumptions, that systematically encapsulating lower
order modules into higher order ones does not change the size of a search space
or its structural bias: Theorem 1. We also provide an experimental analysis in
support of this analytical result. Therefore, the encapsulation of modules alone
does not benefit evolutionary search.

2. Under what circumstances does the encapsulation of lower level modules or

primitives into higher level modules benefit evolutionary search and how?
Adding a module to a search space increases the size of the alphabet and, conse-
quently, the size of the search space. This increase can be countered if appropriate
modules are selected which decrease the length of an optimal solution. We de-
fine good modules as modules that are present in the optimal solution and bad
modules as modules that are not. We provide an expression in (6) to determine
when module encapsulation is advantageous. Using this expression we can an-
swer this question as follows: encapsulating bad modules is always detrimental;
encapsulating good modules is advantageous only if (6) is satisfied.

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Clark, A., Thornton, C.: Trading spaces: Computation, representation, and the
limits of uninformed learning. Behavioral and Brain Sciences 20 (1997) 57-90
Jones, T., Forrest, S.: Fitness distance correlation as a measure of problem difficulty
for gas. In Eshelman, L.J., ed.: Proc. 6th Int’l Conf. on GAs. (1995)

Mathias, K., Whitley, L.D.: Transforming the search space with gray coding. In:
Proc. IEEE Int’l Conference on Evolutionary Computation. (1994) 513-518
Wolpert, D.H., Macready, W.G.: No free lunch theorems for search. Technical
Report SFI-TR-95-02-010, The Santa Fe Institute, Santa Fe, NM (1995)

Watson, R.A.: Hierarchical module discovery. In: 2003 AAAI Spring Symposium
Series. (2003) 262-267

Koza, J.R., Streeter, M., Keane, M.: Automated synthesis by means of genetic
programming. In: 2003 AAAT Spring Symposium Series. (2003) 138-145

Garibay, I.I., Wu, A.S.: Cross-fertilization between proteomics and computational
synthesis. In: 2003 AAAT Spring Symposium Series. (2003) 67-74

Angeline, P.J., Pollack, J.: Evolutionary module adquisition. In: Proceedings of
the second annual conference on evolutionary programming. (1993) 154-163
Koza, J.R.: Genetic Programming II: Automatic Discovery of Reusable Programs.
MIT Press, Cambridge, MA (1994)

Darwen, P.J.; Yao, X.: Speciation as automatic categorical modularization. IEEE
Transactions on Evolutionary Computation 1 (1997) 101-108

Garibay, 0.0., Garibay, I.I., Wu, A.S.: The modular genetic algorithm: exploiting
regularities in the problem space. In: Proc. of ISCIS 2003. (2003) 578-585

De Jong, E.D., Oates, T.: A coevolutionary approach to representation develop-
ment. In: Proc. of the ICML-2002 WS on development of rep. (2002) 1

De Jong, E.D.: Representation development from pareto-coevolution. In: Proceed-
ings of GECCO 2003. LNCS series, Springer-Verlag (2003) 265-276

Goldberg, D.E., Korb, B., Deb, K.: Messy genetic algorithms: Motivation, analysis,
and first results. Complex Systems 3 (1989) 493-530

Watson, R.A., Pollack, J.: Symbiotic combination as an alternative to sexual
recombination in genetic algorithms. In: Proc. of PPSN VI. (2003) 262-267
Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages, and
Computation. Addison Wesley (1979)

Garibay, O.0., Garibay, I.I., Wu, A.S.: No free luch theorem for modular genomes.
Technical Report CS-TR-04-03, University of Central Florida (2004)

Holland, J.H.: Adaptation in Natural and Artificial Systems. University of Michi-
gan Press, Ann Arbor, MI (1975)

Goldberg, D.E.: Genetic algorithms in search, optimization, and machine learning.
Addison Wesley (1989)

