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Abstract

As the complexity of our society and computational resources increases, so does the
complexity of the problems that we approach using evolutionary search techniques. There
are recent approaches to deal with the problem of scaling evolutionary methods to cope
with highly complex difficult problems. Many of these approaches are biologically inspired
and share an underlying principle: a problem representation based on basic representational
building blocks that interact and self-organize into complex functions or designs. The ob-
servation from the central dogma of molecular biology that proteins are the basic building
blocks of life and the recent advances in proteomics on analysis of structure, function and in-
teraction of entire protein complements, lead us to propose a unifying framework of thought
for these approaches: the proteomics approach. This thesis propose to investigate whether
the self-organization of protein analogous structures at the representation level can increase
the degree of complexity and “novelty” of solutions obtainable using evolutionary search
techniques. In order to do so, we identify two fundamental aspects of this transition: (1)
proteins interact in a three dimensional medium analogous to a multiset; and (2) proteins
are functional structures. The first aspect is foundational for understanding of the second.

This thesis analyzes the first aspect. It investigates the effects of using a genome to pro-
teome mapping on evolutionary computation. This analysis is based on a genetic algorithm
(GA) with a string to multiset mapping that we call the proportional genetic algorithm
(PGA), and it focuses on the feasibility and effectiveness of this mapping. This mapping
leads to a fundamental departure from typical EC methods: using a multiset of proteins as
an intermediate mapping results in a completely location independent problem representa-
tion where the location of the genes in a genome has no effect on the fitness of the solutions.
Completely location independent representations, by definition, do not suffer from tradi-
tional EC hurdles associated with the location of the genes or positional effect in a genome.
Such representations have the ability to self-organize into a genomic structure that appears
to favor positive correlations between form and quality of represented solutions. Completely
location independent representations also introduce new problems of their own such as the
need for large alphabets of symbols and the theoretical need for larger representation spaces
than traditional approaches. Overall, these representations perform as well or better than
traditional representations and they appear to be particularly good for the class of problems
involving proportions or multisets.

This thesis concludes that the use of protein analogous structures as an intermediate
representation in evolutionary computation is not only feasible but in some cases advan-
tageous. In addition, it lays the groundwork for further research on proteins as functional
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self-organizing structures capable of building increasingly complex functionality, and as basic
units of problem representation for evolutionary computation.
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CHAPTER 1

INTRODUCTION

“Further research into intelligence of machinery will probably be very greatly concerned with
searches... There is the genetical or evolutionary search by which a combination of genes is looked
for, the criterion being the survival value. The remarkable success of this search confirms to some

extent the idea that intellectual activity consist mainly of various kinds of search”

–ALAN TURING, “Intelligent Machinery”, 1948

As early as the very beginnings of the science of computation, in the times of Charles
Babbage and his “analytical engine”, search has been recognized as an important conceptual
tool for problem solving. Later, in the initial stages of modern computational theory and
artificial intelligence, Alan Turing proposed various kinds of search as a means to achieve
machine intelligence. Since then, search, in particular heuristic search, has played an impor-
tant and historical role in artificial intelligence. In heuristic search, a computer seeks the
answer to a problem by searching through the space of all possible candidate solutions using
heuristics to guide the search toward promising areas. These heuristics are simply guiding
principles obtained by using knowledge about the nature of the problem being solved.

Since the very beginning, there has been an intuitive understanding that, because heuris-
tics are based on specific knowledge of the target problem, a universally best search algorithm,
which is good for all problems, does not exist. It is only recently, however, that Wolpert
and Macready (1997) have provided a formal proof. In their No Free Lunch theorems, they
show, in essence, that an algorithm that performs well in one problem class is guaranteed to
perform poorly on another. More importantly, they show that all search algorithms perform
the same when averaged over all possible problems. As a result, there is a fundamental
tradeoff between algorithm robustness across problems and algorithm performance.

Given that there is no universal search algorithm we are left with the task of designing
algorithms that are specialized for a particular problem or a problem class. When there is
an abundance of domain knowledge about the problem that we are trying to solve, a good
deterministic algorithm can be designed and often its convergence to the optimal can be
guaranteed. If the domain knowledge is incomplete, we still have the possibility of using some
appropriate heuristic to guide the search. Unfortunately, for many interesting theoretical and
practical problems, the space to be searched is too complex or too vast or both for us to
devise an obvious heuristic or to collect a meaningful amount of domain knowledge. These
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problems are difficult. For the worst of these cases, the best we can do is random or brute-
force exhaustive search. Fortunately, many of these difficult problems share a key property
that can be leveraged to guide the search: there is a positive correlation between the form
and quality of candidate solutions. In other words, small changes in the form of a solution
cause small changes in the resulting quality of the solution. Stochastic search algorithms are
the class of search algorithms based on this key property. Stochastic search algorithms are
more robust than other types of search algorithms in the sense that the key property they are
based upon is quite general across problems and that they require less domain knowledge.
They are weaker than other search algorithms in the sense that convergence to an optimum
is usually not guaranteed. However, stochastic search algorithms often outperform random
search and they have been shown to have wide applicability on this class of difficult problems
where no strong heuristics are available, especially on computationally hard combinatorial
problems such planning, scheduling, constraint satisfaction, and satisfiability.

This thesis focuses on a subclass of stochastic search approaches called evolutionary
computation (EC). More specifically, it examines a new kind of nature-inspired problem
representation that attempts to capture the way in which nature deals with complexity. In
addition to providing a better understanding of the impact of this new representation on EC,
many of the results presented can be applied to other stochastic search algorithms including
simulated annealing, stochastic hill-climbing, tabu search, and ant colony optimization.

1.1 Evolutionary Computation

Evolutionary computation methods or evolutionary algorithms (EA) are iterative stochastic
search procedures inspired by the Darwinian concept of evolution by natural selection. These
methods have proven to be particularly effective for solving computationally difficult prob-
lems. Evolutionary computation methods start with a population of randomly generated
candidate solutions known as individuals. The quality of these individuals is evaluated using
some fitness measurement. The best fit individuals are then selected to breed a new gen-
eration of individuals using operators such mutation and crossover. New individuals are in
turn evaluated, selected and bred. This procedure iterates until some criteria for optimality
has been met or until the computational resources are exhausted.

Despite the fact that the characterization of the class of problems for which evolutionary
computation is particularly suited for remains an open question, EC algorithms are increas-
ingly used successfully in a variety of applications such electronic circuit design, architectural
design, antennas design, engineering optimization, factory job scheduling, network config-
uration, robot controllers, etc. Recently, there is a trend in the EC community to tackle
human-competitive complex problems from which solutions can potentially be patented as
innovative inventions on their on right.
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1.2 Complexity Problem

As our society becomes more complex and computing power increases exponentially, we are
reaching limits of complexity for computational problem solving that were not possible be-
fore. Examples of these limits are the amount of data generated by the genome sequencing
project, the amount of data that can be gather by modern radio telescopes, the complexity
of software and hardware design projects, the amount of nodes and data in current commu-
nication networks, etc.

As complexity increases so does the need to create new tools to cope with and manage it.
EC’s generality, robustness, flexibility, and minimal dependence of domain knowledge make
it particularly appropriate for these problems. Nevertheless, there are limits to what EC can
currently accomplish in terms of complexity. As these methods are applied to increasingly
difficult problems that require increasingly complex solutions, they face a number of prob-
lems: premature convergence to suboptimal solutions, stagnation of search in large search
spaces, negative epistatic effects, and disruption of large building blocks, among others. We
call the problem of overcoming current EC limitations in order to scale to high complexities
the EC complexity problem.

While evolutionary algorithms constantly struggle with complexity, natural evolution
deals with extremely complex organisms with ease. In fact, natural evolution seems to not
have any problem evolving strikingly complex solutions. Our quest, therefore, is to localize
and extract the principles that nature uses to deal with complexity and apply them to build
better algorithms.

One of the most critical decisions of applying EC methods to a particular problem is the
definition of the space to be searched. This space is defined by a mapping between the space
of all possible problem solutions and the internal representation space actually explored by
the algorithm. The choice of representation is crucial because it will determine not only the
size and complexity of the search space but also the size and complexity of the structures
representing candidate solutions. Recently, various representational approaches to deal with
the complexity problem have been proposed including methods based on self-organization
of representations, generative representations, developmental biology, morphogenesis, and
cellular automata among others. Many representational approaches to the EC complexity
problem have the underlying theme of using simple representational building blocks that
interact in complex ways (growth, development, embryogenesis, self-organization of building
blocks) to achieve complexity in function or design. We make this underlying principle
explicit on the proteomic approach to evolutionary computation.
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1.3 Proteomic Approach

Proteins are the basic building blocks of life. Evolutionary computation (EC) traditionally
relies on gene analogous structures to represent candidate solutions for a given problem. We
propose to investigate whether self-organization of protein analogous structures at the rep-
resentation level can increase the degree of complexity and “novelty” of solutions obtainable
using evolutionary search techniques. In this proteome-based representational approach,
functional structures analogous to proteins act as complexity builders for a genome. As in
many representational approaches, the proteome-based approach is motivated by the ob-
servation that nature seems to compress or at least bias the information encoded in the
genome. The genome determines the size of the search space and it is the target of evolu-
tionary changes. It is, however, the uncompressed version of the genes, the organism, that
is tested for fitness in a given environment. Furthermore, there is recent biological evidence
that suggest that the complexity of an organism is not necessarily correlated with the num-
ber of genes in their genome but more with the process of gene expression. For instance,
there are more genes in the rice genome than in the human genome; and differences in the
brain composition among humans and other primates are not so much due to differences in
the genetic make up but to differences in amounts of expressed genes—proteins.

The biological processes motivating many representational approaches such embriogen-
esis and development, are far from understood, but there are some points that are widely
accepted. The “central dogma” of molecular biology is one of them. The central dogma, in
essence, says that DNA translates into proteins and that proteins, not genes, are the basic
building blocks of biological functionality. In the proteomic approach, we use the central
dogma as a guiding principle. We represent solutions not using a genome, as classic EC
does, but base our problem representation on the protein complement of the genome—the
proteome.

There are two fundamental aspects introduced by a proteome-based representation: (1)
proteins interact in a three dimensional medium analogous to a soup or multiset; and (2)
proteins are functional structures. The first aspect is foundational for the study of the
second. This thesis focuses on analyzing the effects on EC introduced by the first aspect:
using a “content” oriented structure such a multiset of proteins instead of a traditional
“order” oriented structure such a string of genes as the basis for problem representation.
On this representational analysis, the genetic operators act upon traditional strings of genes
associated with the multisets of proteins. As a result, genetic operators are kept fixed.
We call these types of representations completely location independent or proteome-based
location independent representations. This analysis lays the groundwork for further study
on representational approaches to the complexity problem, and to studies on the effects of
using protein-like structures as a basis for EC problem representation.
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1.4 Studying Proteome-based Location Independent
Representations

The goal of this thesis is to study the basic effects of using proteome-based location inde-
pendent representations in evolutionary computation methods.

1.4.1 Strategy and Methodology

A fundamental question about the proteomic approach, as well as other approaches to
the EC complexity problem such the ones based on morphogenesis, development and self-
organization is: are these representations useful for scaling EC methods to high complexities?
or what are these representations useful for? Several studies in this areas show promising
results. Nevertheless, there are still basic, fundamental questions about these approaches
that remain unanswered such as: is it feasible or effective or both to represent solutions us-
ing these approaches? and what are the effects on EC methods due to this representations?
Our strategy is to recast these abstract questions into a more controllable and simplified
environment suitable for empirical and theoretical analysis. The first aspect of the pro-
teome approach is realized by what we have called the proteome-based location independent
reprentations. Therefore, we recast the fundamental questions as follows: Are location in-
dependent proteome-based representation feasible? effective? for simple problems? complex
problems? are they effective for a particular problem class? What are the effects of using lo-
cation independent proteome-based representations compared with traditional representation
in EC? These questions and their answers are the central topics of this thesis.

Our method combines empirical and mathematical analysis. We define an empirical
framework for study proteome-based location independent representations based on a canon-
ical genetic algorithm (GA) that we called proportional genetic algorithm (PGA). We use
this framework to analyze the comparative performance of these representations as well as
to analyze the emergent genomic order. We use basic combinatorial and probability theories
to analyze the basic effects of the genome to proteome mapping such as the genome and
proteome space sizes, the quantity and sizes of neutral classes, the space requirements for
representing the same problem on traditional and proteome-based approaches, and proba-
bilities of finding solutions by random sampling in both approaches.

1.4.2 Contributions

This thesis contributes to the field of Evolutionary Computation in the following ways:

5



• It proposes a new approach to EC based on the central dogma of molecular biology.
There are many approaches to scale EC to high complexities based on biologically
inspired principles such embryogenesis and developmental biology. The proteomic ap-
proach, however, captures and makes explicit the underlying principle of many of these
representational approaches: basing problem representation on basic building blocks that
interact and self-organize into complex functions or designs. This thesis provides the
first comprehensive study of one of the basic aspects of this approach: proteome-based
location independent representations.

• It defines an empirical framework with which to study proteome-based location inde-
pendent representations using a genetic algorithm, the proportional genetic algorithm.
The PGA proteome-based location independent representation, by definition, does not
suffer from traditional EC hurdles associated with the arrangement of the genes or posi-
tional effect in a genome. This improvement is possible simply because proteome-based
representations are based on “genomic content” whereas traditional representations are
based on “genomic order”. Eliminating these hurdles delivers an algorithm that is less
sensitive to implementation decisions and therefore more robust. Such a representation
has the ability to self-organize into a genomic structure that appears to favor positive
correlations between the form and quality of represented solutions. Additionally, it
provides experimental evidence of some positive effects such as automatic adjustment
of genomic resources and formation of self-similar building blocks.

• It provides theoretical and empirical evidence that a protein based representation is
feasible and effective for practical problems. It shows theoretically the relationship
between comparable genotypic and phenotypic space sizes needed for a fair comparison
and provides substantial empirical evidence (380 million fitness evaluations over various
problems and parameters settings) of the competence of this approach.

• It presents a case study for the proteomic approach to EC on a nontrivial and difficult
real world problem: optimizing control of Advance Life Support Systems (ALSS), part
of the NASA BioPlex project. This case study illustrates the effects of this approach
on evolutionary algorithms and compares it to the effects of this approach on hill-
climbing algorithms. This thesis gives a formalization of this problem, its optimization
objectives, and its strategies in a framework given in Appendix A.

1.5 Overview

The reminder of this thesis proceeds as follows. The first three chapters introduce evolution-
ary computation and proteomics providing a review of the existing literature. Chapter 2 gives
an introduction to evolutionary methods and genetic algorithms, and provides a literature
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search on location independent representations and genotype to phenotype transformations.
Chapter 3 gives a biological review from early genetics to current genomics and proteomics,
with emphasis on proteins as functional structures.

The next two chapters introduce the proteomics approach to evolutionary computation.
Chapter 4 describes the proteome approach as a new problem representation approach for
evolutionary computation based on structures analogous to proteins. It also defines the
aspect of the proteomic approach subject of analysis on this thesis: proteome-based loca-
tion independent representations. Chapter 5 describes an empirical framework for studying
proteome-based location independent representations based on a simple genetic algorithm
that we call the proportional genetic algorithm.

The next four chapters provide a detailed analysis of proteome-based location indepen-
dent representations. Chapter 6 gives a formal analysis of the proteome-based location
independent genotype to phenotype mapping. Using combinatorics, we provide a closed
form expression for the relationship between an individual’s length and alphabet size that
will result in comparable solution spaces. We also provide closed form expressions for: geno-
type and phenotype space sizes, the number of neutral classes in the genotype space, and the
sizes of these neutral classes as function of the multiplicities of its elements. We conclude
with a random sampling analysis that determines when proteome-based representation will
have the advantage over traditional representations and shows that on average both ap-
proaches have similar chances of finding the solutions (statistical corroboration of the No
Free Lunch theorem for this case). Chapter 7 provides an experimental analysis of the PGA.
This analysis shows that PGA is as effective as or better than the GA on the problems
tested and that PGA appears to be particularly suited for resource allocation problems or
problems involving proportions or multisets. This chapter also shows that PGA genomes
exhibit intriguing building blocks resembling the characteristics of the entire individual’s
genome. Chapter 8 presents an empirical and formal analysis of the emergent PGA genomic
structure. It use standard spectral density techniques to determine that the PGA genomes
of successfully evolved individuals resemble white noise, confirming results in the previous
chapter that suggested evenly distributed symbols throughout the entire PGA genome. It de-
termines empirically that self-similarity with respect to fitness emerges in the PGA genomes
of successfully evolved individuals. These analyses have two important implications: that
proteome-based representations provide a good positive correlation between form and quality
of candidate solutions, and that building block disruption is minimal. Chapter 9 discusses
the application of the proteome-based location independent representation as embodied in
the PGA to control optimization of Advance Life Support Systems. Finally, Chapter 10
discusses future work and Chapter 11 provides some concluding remarks.

Appendix A gives a formalization of the advance life support system and Appendix B
provides a full collection of tables and figures.

7



CHAPTER 2

BACKGROUND

This preservation of favorable individual differences and variations and the destruction of those
which are injurious, I have called Natural Selection, or the Survival of the Fittest.

–CHARLES DARWIN, “The Origin of Species”, 1859.

2.1 Evolutionary Computation

Evolutionary Computation (EC) is a relatively young field. Acording to the Handbook of
Evolutionay Computation [BFM97], the term itself was coined in 1991 as an attempt to bring
together three related research communities: Evolutionary Programming [Fog62, Fog64],
Evolution Strategies [Rec65] and Genetic Algorithms [Hol62, Hol75a, Gol89]. In the early
1960’s, these communities independently developed evolutionarily inspired computational
paradigms that share the basis of any evolutionary process: reproduction, random variation,
competition and selection. The earliest work on evolutionarily inspired computation can be
traced back, at least, to the apparition of the first electronic computers, i.e., see Fraser [Fra57]
and Friedberg [Fri58, FDN59].

In essence, evolutionary computation searches for good solutions to problems by testing
large number of candidate solutions, selecting the “better” ones and randomly changing them
to form a new set of candidates to be tested. This process repeats until a “good enough”
solution is found or until the computational resources are exhausted.

Evolutionary computation is inspired by the process of evolution by natural selection
originally proposed by Darwin [Dar59]. The EC jargon is grossly adapted from terms used
in Genetics, Population Genetics, Evolutionary Biology, Molecular Biology, Evolutionary
Theory and related fields. In EC, a candidate solution to a problem is known as an individual.
A collection of such individuals form a population. When individuals undergo variations to
generate another individuals, they are said to be breeding. While testing an individual,
we assign a quantitative measurement of its performance known as its fitness. The set of
individuals created by replication and variation of the current population are known as the
next generation. The overall process of finding a good solution using this technique is known
as evolving a solution.
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Evolutionary Computation searches for “good solutions” over the space of all possible
candidate solutions, the search space. In many cases, the variations to generate new individ-
uals are not performed on the search space itself but on an auxiliary space, the representation
space.

In this case, the individuals of the population are members of the representation space
and are known also as genomes, genotypes, or chromosomes. Elements of the search space are
known as phenotypes, and the process of mapping a genotype (structure subject to variation)
into a phenotype (candidate solution) is known as morphogenesis.

2.1.1 Genetic Algorithms

Genetic algorithms were proposed by Holland in the context of adaptive systems. Their
initial motivation was twofold: to understand the principles of natural adaptive systems and
to construct robust artifical adaptive systems that could successfully respond to unexpected
environmental changes. In contrast, Evolutionary Strategies were initially developed to
evolve optimization techniques and Evolution Programming, to evolve intelligent agents.
Another fundamental difference is that the main source of variation on Genetic Algorithms
is recombination or crossover. The central role of recombination in the GAs is initially
explained and further analysed by Holland in the Building Block Hypothesis and in its famous
Schema theorem [Hol75a]. For the other paradigms, the main source of variation is mutation.

The idea of a genotype to phenotype separation, as found in nature, has been a central
part of the GA since its inception. Individuals are represented by structures called genotypes.
GA operators manipulate the genotypes of each individual. After a decoding process, these
genotypes are translated into phenotypic structures upon which fitness is evaluated. The
GA genotypes are typically, but not always, restricted to bit strings. A segment or various
segments of the genotype that represent a component of a solution are usually called genes.

Figure 2.1 shows the basic steps of a GA. The initial population may be initialized
randomly or with user-defined individuals. The GA then iterates thru an evaluate-select-
reproduce cycle until either a stopping condition is satisfied or the computational resources
are exhausted.

In the following, we survey two central issues for our study: GA representations, focusing
on location independent representations and genotype-phenotype mappings—the mapping
between the representation space to the search space.
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procedure GA
{
initialize population;
while termination condition not satisfied do

{
evaluate current population;
select parents;
apply genetic operators to

parents to create offspring;
set current population equal to

be the new offspring population;
}

}

Figure 2.1: Basic steps of a typical genetic algorithm.

1000101101101111
p� aram 1 p� aram 2 p� aram 3 p� aram 4

Figure 2.2: Example of location dependent problem representation. Each parameter value
is encoded at a fixed location on each individual.

2.2 Related Work

2.2.1 Location Independent Representations

The importance of the arrangement of encoded information has been recognized since the
introduction of the GA. Holland [Hol75a] recommended the use of an inversion operator as
a way to rearrange information to find tightly linked building blocks. A building block is
a collection of bits or regions on an individual that work together to affect the fitness of
that individual. Early GA studies successfully used a representation in which both the value
and the ordering of the genes are dynamically evolved by a GA [Bag67] and investigated
the effects of gene order on a GA [Fra72]. Nevertheless since then, much of the community
has, in a sense, “converged prematurely” to the neat, orderly, fixed encodings that are so
common today.

Figure 2.2 shows an example of a typical GA problem representation. Information is
encoded on an individual in a location dependent manner, e.g. bits 0 to 3 always represent
parameter 1; bits 4 to 7, parameter 2; and so on. The ordering of the information on
an individual is typically an arbitrary programmer decision. A difficulty with this type of
representation arises due to crossover’s positional bias [ECS89]. Positional bias refers to the
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fact that bits that are relatively far apart on an individual will be more likely to be disrupted
(separated) by crossover than bits that are close together. Conversely, bits that are close
together are more likely to be treated as atomic units (not separated) by crossover than bits
that are far apart. If there is epistasis between various components of a problem solution,
encoding those components close together will reduce the chance that crossover will disrupt
those components. As encoded in Figure 2.2, the probability that crossover will disrupt
param1 and param2 is much lower than the probability that crossover will disrupt param1
and param4. The problem is that we do not always know which components are epistatic,
and an arbitrary arrangement of the components of a solution on an individual may or may
not elicit good performance from a GA.

A number of options have been investigated to deal with this problem, including oper-
ators such as inversion [Hol75a, Gol89] and uniform crossover [Sys89] which have little or
no positional bias. A significant amount of research has also been devoted to examining
ways in which problem representation may be designed to improve the GA search process.
Numerous studies have focused on representations that allow a GA to dynamically evolve
the arrangement of information on an individual. This class of representations provides
flexibility at the expense of an increased search space. An alternative approach is the use
of genotype-to-phenotype mappings to distinquish and transform between search space and
solution space.

2.2.1.1 Bit Level Location Independence

The basic unit of information on a typical GA individual is a bit. Thus, the bit level is the
lowest at which one would need to consider the arrangement of information. In some cases,
problem encoding naturally places the bits that make up a building block in close proximity
on an individual, e.g. each of the groups of four bits that encode for a single parameter value
in figure 2.2. In other cases, a building block may consist of bits that are spread out across
an entire individual. In the latter example, the ability to dynamically evolve the order of
the bits on an individual would improve linkage among related bits and help identify and
preserve building blocks.

Goldberg et al. [GKD89] developed the messy GA to investigate whether a GA is able
to identify and recombine building blocks to form optimal solutions. The messy GA encodes
individuals as a vector of pairs, where each pair specifies the location and value of a bit. Spe-
cial rules deal with overspecified (duplicate) or underspecified (missing) bits. This encoding
allows a GA to evolve both the value and the ordering of information on an individual. The
fact that the physical ordering of information on an individual can be different from the
interpreted ordering means that a messy GA can arrange related bits into close proximity to
decrease the chance of disruption by crossover. Thus, a messy GA can rearrange information
to form tightly linked building blocks which may then be recombined to create a complete
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solution. Empirical tests indicate that a messy GA can solve difficult, deceptive problems,
even when encodings are “loose”. In comparison, a simple GA, on average, is only able to
achieve about 25% of the correct solution on the problems tested.

The fast messy GA [GDK93] improves upon the messy GA by reducing the computational
efforts in the early phases of the messy GA. The gene expression messy GA [Kar96] enhances
the messy GA to actively search for linkage relationships within a search space. The linkage
learning GA [Har97] is an elegant extension which uses a modified representation and new
operators that alter the relative positioning of genes to create building blocks.

While the messy GA and linkage learning GA allow for bitwise location independence in
the problem representation, the mapping from a GA individual to a problem solution still
retains some aspects of order: (1) the order in which bits appear in an individual affects
their expression, and (2) some sort of reordering of the bits is typically required to decode an
individual into a solution. A side effect of the latter is that each bit within a list of ordered
bits has a specific meaning or use, e.g. the 2nd binary digit. As a result, all encoding bits
must exist in order for a solution to be formed. In the messy GA, missing or duplicate bits
require special repair or selection mechanisms to determine what is expressed. These special
mechanisms can increase the complexity of the system and potentially introduce biases into
the search process. The linkage learning GA eliminates some of these biases by maintaining
copies of all bits in each individual.

2.2.1.2 Group Level Location Independence

Many problems such as the example in figure 2.2 use multiple bits to encode the component
values of their solutions. These groups of bits are obvious building blocks which would likely
benefit from a tight encoding. Combinations of these basic building blocks or genes may also
create higher level building blocks. As a result, the ordering and arrangement of groups of
bits (basic building blocks) has also been an active area of research.

Wu and Lindsay [WL96] developed the floating representation to study the maintenance
of diversity in a GA. This representation assigns a tag to each parameter or basic building
block in a solution. The fitness function then searches each individual for all tags and
retrieves the value of each parameter from the bits immediately following each tag. Figure 2.3
shows an example of how a problem may be encoded with the floating representation. In
this example, the tag for param2 is 1101 and the tag for param3 is 0111. The floating
representation allows basic building blocks to be encoded anywhere on an individual while
keeping the component bits of a basic building block together. This representation allows for
overlapping building blocks which could reduce the amount of resources required to specify
a solution. Like the messy GA, special rules are necessary to deal with overspecification and
underspecification of values. Studies indicate that a GA using the floating representation is
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Figure 2.3: Example of the floating representation.

able to retain greater diversity in the population and that genetic operators in this system
have more exploratory power [WD99].

Soule and Ball [SB01] investigated an encoding similar to the floating representation
focusing on the idea of reading frames. Tags were used to delimit genes which could appear
anywhere on an individual. These studies were conducted to investigate the likelihood and
consequences of evolving overlapping genes. While performance varied from problem to
problem, the GA was able to evolve genes much longer than the individuals encoding them.

Burke et al. [BDG98] investigated the evolution of the Virtual Virus (VIV) which encoded
genes as location independent character segments. This work focused on investigating the
factors that affect the evolved size and fitness of individuals and on understanding the use of
non-coding regions in a GA. Empirical studies produced clear evidence of regions switching
between coding and non-coding status, adding support to the hypothesis that non-coding
regions may serve as backups for coding regions by storing extra copies of useful information.
Both coding and non-coding regions contained obvious building blocks (potential genes).
In addition, the GA appeared to monitor the length of evolved individuals in response
to parameter settings such as mutation rate. Variation in average length of individuals
throughout a run suggested that the GA exploits longer individuals early in a run when
extra resources are helpful in searching for potential solutions then fine tunes to shorter
individuals later in the run in response to parsimony pressure.

Group-wise location independence suffers from some of the same weaknesses as bit-wise
location independence. There is again the notion that each building block has a specific
meaning or contribution and, as a result, a value for every building block is needed in order
for a solution to be formed. Missing and duplicate building blocks require special treatment.
In addition, the final arrangement of building blocks can be sensitive to early decisions in
a GA run. Bad decisions early in a GA run could result in arrangements in which it is
impossible to encode all building blocks.
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2.2.1.3 Alternative Location Independent Atomic Units

Both the bit-level and group-level use fairly general atomic units that can be used to encode
more complex information. An alternate method is to make the atomic units themselves
more complex. A number of applications have successfully used such representations. Each
unit is a larger, more comprehensive idea or value than a bit, each variation of the unit may
be considered a “character”, and the alphabet size is typically much larger than two. The
collection of units on an individuals are “expressed” and work together to create a solution.
Information not encoded on an individual cannot be and is not expressed. The ordering of
the units on a GA individual should not effect the fitness of the individual.

A common example of such a representation is the evolution of rule sets [GRS90, WSA99].
Each individual represents an entire rule set for controlling robots and the basic atomic units
are condition-action rules. Crossover exchanges groups of rules, but will not fall within a
rule. Mutation and other related operators change individual rules. Each individual (rule
set) is evaluated on the behavior of a robot using that rule set. Rules are selected to fire
based on the similarity of the condition clause of a rule with the current conditions of the
robot. Thus, the collection of rules in a rule set is expected to affect its performance. The
ordering of the rules in a rule set has absolutely no effect on the interaction of the evolved
rules when applied to a problem.

Another related representation is Franceschini et al.’s [FWM00] work on disaggregation.
A GA is used to evolved the configuration of a group of entities which satisfies pre-specifed
rules. As there is no distinction among the entities, each GA individual simply encodes a
vector of coordinates. The order in which these coordinates are arranged on an individual
had no effect on the solution. The fitness evaluation simply considers the content or collection
of coordinates encoded. The existence of a coordinate affects the solution, the location of
that coordinate does not.

Representations which use complex atomic units can be very effective at exploiting the
advantages of location independence. Their implementation, however, will often require
development of complex representations and problem specific operators.

2.2.2 Genotype to Phenotype Transformations

Genotype to phenotype transformations or mappings have also been studied as a way to
improve GA problem representations. Such transformations distinguish between the search
space and the solution space of a problem and allow for the development of a search space that
is amenable to the GA search process when a solution space is not. One might take advantage
of such a distinction to develop genotypes which, for example, simplify or otherwise modify
the search space, include redundancies which could provide the GA with “backup copies”
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or a form of memory, include neutral classes (classes of multiple genotypes that map to a
single phenotype) to increase connectivity in the solution space, or eliminate the generation
of invalid solutions (and the need for repair or specialized operators). Some examples of
approaches to studying genotype to phenotype transformations include the following.

Kargupta and Park [Kar01, KP01] examine transformations of a fitness function into
Fourier space as a way distributing fitness evaluation and show that for a given class of func-
tions, such evaluations may be performed in polynomial time. Redundant representations,
which investigate mappings where only a subset of the encoded information on an individual
is expressed, include diploidy and dominance mapping [Lew97, NW95, SG92, YA94], the
structured GA [DM92], as well as many of the approaches discussed in the previous sections.
A common side effect of redundant representations is the emergence of neutral variants.
Studies of mappings that allow neutral variants indicate benefit in terms of diversity and
efficiency [Ban94, SSE00a, VM00]. Genetic programming studies have investigated dynamic
evolution of the genetic code (which essentially dictates the genotype to phenotype mapping)
[KB99, KB01, OR00]. A GA has also been used to develop simulations of gene expression
and regulation in artificial cellular environments [KO97].

2.2.2.1 Redundant Representations and Neutrality

Redundant representations are characterized by their many-to-one genotype to phenotype
mappings, i.e., several genotypes map to the same phenotype. Despite the fact that redun-
dancy in a representation has been traditionally regarded as a poor design practice [Rad91]
and that compact representations are often preferred, the advantages and disadvantages of
redundant encodings have been the subject of recent reconsideration [Jul99, Shi99, SSE00b,
WW01]. This reconsideration is due, in part, to relatively recent developments in evolution-
ary theory and molecular evolutionary biology on the role of neutrality in evolution.

In redundant representations, genetic operators can produce genotypic variations that are
neutral with respect to selection, i.e., variations which produce an offspring that share the
same phenotype with its parent. The possibility of having these neutral operations induces
so called neutral networks. A neutral network is a set of genotypes that map to the same
phenotype and that are connected by a sequence of neutral operations.

The existence of neutral networks was originally proposed by Kimura in his neutral theory
of molecular evolution [Kim68]. Due to the recent availability of abundant DNA sequence
data, this theory has received a substantial body of evidence in support [Kim83, Nei87]
and is now being accepted as the most accurate theoretical framework for evolution at
the molecular level [Hug99]. The main tenet of the neutral theory is that most genotype
variations are selectively neutral and that most changes, over evolutionary time, occur as a
result of a random fixation of these variations (genetic drift) [Kim68, Kim83]. This neutralist
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approach to molecular evolution as well as its implications has been subject of extensive
study [Kim77, KC78, Kim80, Kim81, Kim87, Huy96, HSF96, Hug99]

The importance of selective neutrality as a significant factor in artificial evolution has
receive increasing attention, i.e. see [TI02, ELA01, RB99, Bar98, NE98, Ban94]. There is
experimental evidence that neutral networks appear also in complex artificial evolutionary
landscapes, for instance: in on-chip hardware evolution [HT96] and in neural networks based
robot control systems [SHO01].

2.2.2.2 Self-organization in Representations

There is recent interest in approaches that increase the complexity of solutions without
increasing the complexity of genomes in order to better scale evolutionary search. These
approaches all share some degree of implicit self-organization. For instance the concepts of
developmental mappings [KFA99, KKS03, KSK03], implicit embryogenies [KB03b, Ben03],
developmental biology [Ben04, Kum04],generative representations [HLP03, Hor03a, Hor03b],
molecular computing [Con00], self-replicating sequences [GBB03, BDE99], cellular automata
variations [MT04, Roc04], and constrained generating procedures [Hol98], all share, to some
degree, this perspective in which some sort of self-organizing principle drives the represen-
tation of the problems.

16



CHAPTER 3

FROM GENETICS TO GENOMICS

“It now became possible to understand the hereditary variation that is found throughout the
biological world and that forms the basis of the theory of evolution. Genes are normally copied

exactly during chromosome duplication. Rarely, however, changes (mutations) occur in genes to
give rise to altered forms most, but not all, of which function less well...”

–JAMES WATSON, co-discoverer of the DNA, “Molecular Biology of the Gene”, 1976

3.1 Genetics

Genetics, classically, is the science of heredity and focuses on the transmission of characters
or “traits” from one generation to the next. Modern genetics, however, can be defined as the
study of biological information in general. All living organisms store, replicate, and transmit
biological information to the next generation . This biological information represents the
most valuable asset a living organism inherits from its ancestors and is used for development,
reproduction and above all for surviving in its environment.

We consider that the major tenets of modern Genetics, as of the turn of the twenty-first
century, are well characterized by Hartwell [HHG00] as:

• Biological information is encoded in the DNA molecule.

• Biological function emerges primarily from protein molecules.

• All living forms are closely related.

• The modular construction of genomes allows for the relatively rapid evolu-
tion of complexity.

3.1.1 Information Structures

A DNA molecule is a long polymer that stores biological information digitally in subunits
known as nucleotides. Each nucleotide consists of a deoxyribose sugar, a phosphate, and one
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Figure 3.1: DNA, the biological unit of information storage, schematic and double helix
structure

of four nitrogenous bases—adenine (A), thymine (T), cytosine (C), or guanine (G). These
nucleotides are the building blocks of DNA. The DNA message is encoded as a long chain
of these nucleotides, a DNA strand. The alphabet of this message consists of four letters,
one for each nucleotide type—A, T, C, and G. A DNA molecule usually consists of two
complementary DNA strands twisted about each other forming a double helix [Wat76]. The
two strands carry complementary nucleotide chains with adenine always paired with thymine
and guanine with cytosine. Each A-T and G-C pair is known as a base pair. Figure 3.1 shows
a DNA schematic and the DNA double helix structure.

The complementary nature of these base pairs and the double stranded structure of the
DNA allow for redundancy and self repair mechanisms that contribute to the correct storage
and replication of the encoded biological information. The DNA structure appears also to
be highly resistant to a range of conditions such as humidity, temperature and pressure. In
fact, ancient DNA has been found to carry readable sequences: 8000-year-old DNA from
human skulls found in Florida and 18-million-year-old DNA from fossilized leaves in an
Idaho [HHG00]. Inside the cells of an organism, DNA is organized into chromosomes. The
complete set of chromosomes in each cell of a organism constitutes its genome. A genome
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is, in essence, the entire collection of an organism’s biological information. Each cell of a
multicellular organism contains a copy of the organism’s genome.

The process of natural evolution has taken approximately 4 billion years to develop
this amazingly efficient, highly specialized structure for information storage, replication,
expression and evolution.

3.1.2 Functional Structures

The most elementary biological building blocks of functionality are proteins. Proteins are
involved in almost every biological process that takes place in living organisms and are ulti-
mately responsible for all of an organism’s properties. Proteins are long molecules composed
of one or more strings of amino acids chained together. Each of these individual chains is
called a polypeptide chain. The encoded sequence of amino acids itself produces the necessary
forces or molecular attractions that fold an amino acid string into the protein characteristic
three-dimensional shape (see Figure 3.2).

3.1.3 The Universal Genetic Code

These amino acid chains are assembled directly from information encoded in segments of the
DNA chain of base-pairs called genes. Three consecutive base-pairs are known as a codon.
Each codon maps to a particular amino acid. The code that maps base-pairs into amino
acids is virtually universal for all living organisms and is known as the genetic code (Table
3.1). The genetic code maps the 4 letter DNA alphabet into a 20 letter amino acid alphabet.
Via this code, the order of bases in an organism’s DNA determines the amino acid sequence
of its corresponding proteins. The process of mapping itself is known as gene expression.
Variations in the DNA encoded information can produce variations in the resulting amino
acid sequence, which produce variations in the final three dimensional shapes of the proteins
that are formed. Since proteins are typically composed of thousands of amino acids, there are
virtually countless number of possible variations. The amazing variety of three-dimensional
protein structure is the basis of the amazing variety of protein function, and the ability to
produce new protein functionality is itself the basis of each organism’s complex and adaptive
behavior.
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Figure 3.2: Protein, the biological functional building block, schematic showing the
three-dimentional folding on prinary, secondary, tertiary and quaternary protein structures.
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Table 3.1: The universal genetic code.
Amino acid Codons
Alanine (Ala) GCU, GCC, GCA, GCG
Arginine (Arg) CGU, CGC, CGA, CGG, AGA, AGG
Asparagine (Asn) AAU, AAC
Aspartic acid (Asp) GAU, GAC
Cysteine (Cys) UGU, UGC
Glycine (Gly) GGU, GGC, GGA, GGG
Glutamic acid (Glu) GAA, GAG
Glutamine (Gln) CAA, CAG
Histidine (His) CAU, CAC
Isoleucine (Ile) AUU, AUC, AUA
Leucine (Leu) CUU, CUC, CUA, CUG, UUA, UUG
Lysine (Lys) AAA, AAG
Methionine (Met) AUG
Phenylalanine UUU, UUC
Proline (Pro) CCU, CCC, CCA, CCG
Serine (Ser) UCU, UCC, UCA, UCG, AGU, AGC
Threonine (Thr) ACU, ACC, ACA, ACG
Tryptophan (Trp) UGG
Tyrosine (Tyr) UAU, UAC
Valine (Val) GUU, GUC, GUA, GUG
STOP UAA, UAG, UGA

3.1.4 The Gene Expression Process

The gene expression process involves two steps. First, the DNA of interest—the gene to be
expressed—is transformed into mRNA (messenger Ribonucleic Acid) by the enzyme RNA
polymerase. Messager RNA is a single-stranded copy of the gene. This step is known as
transcription. Next, the mRNA is translated into protein. Each codon in the mRNA is
mapped to an amino acid in the protein by a mapping molecules called transfer RNAs.
This mapping molecules act according with the genetic code. This last step is known as
translation. With a few exceptions [Hao02, Rot00, AO02], the genetic code used in the
translation process is the same for all living organisms on earth.

3.1.5 Modular Structure of Genomes and Evolution of Complexity

Recent technical advances in genomics, namely the numerous genome sequencing projects,
has allowed for the analysis of complete genomes of several organisms. So far, the results
of these analyses indicate that complex families of genes can arise by the duplication and
divergence of a single primordial gene. After duplication, divergence occurs via mutations
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and rearrangements of the copies of the primordial gene, resulting in a gene family with
a broad spectrum of related functionalities. For instance, the hemoglobin family of genes,
in humans and mice, produces five slightly different proteins. All of them are capable of
transporting oxygen, but each one of them is specialized for some particular oxygen trans-
portation need necessary at some stage of development. All of them are believed to have
evolved from a primordial gene by means of duplication, mutation, and recombination. Gene
duplication followed by mutation and recombination is the underlying evolutionary force that
produces new genes, hence, new proteins with new functionalities. One partial explanation
of the Cambrian Explosion 1 lies in the hierarchical organization of biological information
into chromosomes. Primordial genes duplicate and diverge onto gene families. Gene families
similarly produce supergene families with hundreds of related genes and so on.

3.1.6 Location Independence in Genomes

There is a fundamental difference in what and how information is encoded in biological evo-
lutionary systems and that encoded in computational evolutionary systems. Computational
encodings tend to focus on the order of information. Biological encodings also emphasize
the existence of information.

Ordered encodings are, of course, an important method by which biological systems store
and express information. Proteins are defined by the order of their component amino acids.
Genes are defined by the order of their component DNA molecules. The order in which genes
appear on a genome can be important, for example, the mammalian β-globin gene cluster
consists of one embryonic, two fetal, and two adult genes arranged on the chromosome in
the order in which they are expressed during the development of the organism [WGW92].

From the overall genome viewpoint, however, the job of a genome is to specify the col-
lective and relative amounts of genes needed within a cell. The expressed genes produce
proteins which interact to create life. The type and amount of protein available for inter-
action directly affects the expressed phenotype of a cell or organism. Biological genomes
are not divided into fields, each of which is assigned to produce a specific protein. Rather,
they are more open-ended, with genes appearing where ever a viable encoding is found. The
number of genes that comprise a solution is bounded only by the genome size and the number
of different “encodings” is virtually endless. This viewpoint suggests that the existence or
nonexistence of a gene has as much or more impact than the location of a gene. After all,
the location of a gene can only matter if it exists.

1The relatively short evolutionary time of 10 million years during which multicellular life forms diver-
sified into countless different organisms, after it took eukaryotic cells almost 2 billion years to evolve from
prokaryotic cells and multicellular organism 0.75 billion years to evolve from single-celled eukaryotes.
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There are clear examples in biology which indicate that the existence of a gene allows
it to produce a required protein regardless of its location. Curtis [Cur83] gives an example
where a genetic defect (deletion) is masked by an extra copy of the missing gene on a
different chromosome. The defect is expressed in the offspring which do not have an extra
copy of the missing gene, possibly due to receiving that part of the chromosome from the
other parent. Studies on the expression of X chromosome genes support the importance of
accurate gene expression. Female mammals have two X chromosomes to male mammals’ XY
chromosomes. To prevent females from receiving a double dosage of X chromosome genes,
one X chromosome is suppressed in all female cells [BYF62, Ohn70].

3.2 Genomics

Relatively recent technological advances in molecular biology, particularly in DNA sequenc-
ing have produced a shift of interest from the study of single genes to a more ambitious
endeavor: the study of the entire set of genes that define an organism—the genome. Ge-
nomics was born as a science devoted to genome analysis. Genome analysis has gone from
genome sequencing to genome expression and function. In this sense, Genomics is a natural
progression from Genetics.

Two additional reasons have been argued for the shift from the study of genes to the
study of genomes. First, unlike genomes, genes are difficult to define. At the beginning of
the 1960’s, a gene was a DNA fragment that coded for a protein. Nowadays, this definition
has become more flexible to accommodate various facts. Among them are that some proteins
are made from several genes; that genes are fragmented over wide genome spaces (exons and
introns); that those fragments, in some cases, belong to various genes (regulatory sequences);
and that several different proteins, each of them with different functionality, can be made
from the same gene (differential splicing, multiple reading frames, RNA editing [Sco95]).
Genomes, by contrast, have a simple definition: the complete biological information of an
organism [Mor01]. Second, no gene acts alone. A gene was originally thought to be a single
hereditary unit that produces a single observable feature in a organism. This simple definition
of gene functionality has since been abandoned in favor of a looser interpretation of gene
function. Genes can act cooperatively or antagonistically, with the final observable traits
being the result of a complex interaction of the entire set of genes that composes the genetic
material of an organism [Rid00]. Based on these reasons, some researchers [Beu95, Mor01]
have argued for the use of the concepts of genomes and bits of genomes instead of genes.

The primary factor for the flourishing of genomics, however, is not the gene’s identity
crisis, but the advent of the Genome Era heralded by the remarkable success of the numerous
genome sequencing projects and the wealth of information they have produced. Sequencing
an organism’s genome means spelling out the information encoded on its genome in terms
of the four letter DNA alphabet. Projects of this nature were made possible by novel DNA
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sequencing techniques that became available near the end of the twenty-first century. The
first entire genome of a free-living organism was published on 1995 [PD01] 2 and, as of today,
there are 92 complete genome sequences in the public domain and 475 genomes under analy-
sis [BEK] The most remarkable genome sequenced, the homo sapiens genome, was published
on 2001 independently by Venter and Lander [VO01, Lan01]. The success of these genome
sequencing projects and the public availability of the data have triggered efforts to analyze
the information now available. This information is already being exploited in a number of
ways. Comparative genomics compares the gene sequences of a particular organism with
all other genomes in order to identify differences that could account for important proper-
ties; structural genomics seeks to relate protein structure to gene sequences; and functional
genomics tries to elucidate gene expression and function.

3.3 Proteomics

The huge amount of information produced by these projects, as well as the new techniques
developed, have fueled not only the new science of Genomics but also the emerging field of
Proteomics.

According to Palzkill [Pal02], proteomics is:

...a branch of functional genomics that has risen in response to the inevitable
question posted by the genome sequencing projects, i.e., what are the functions
of all the proteins? Proteomics can be defined as the large-scale study of protein
properties such as expression levels, post-translational modifications and inter-
actions with other molecules to obtain a global view of cellular processes at the
protein level.

Proteomics focuses on analyzing the entire protein complement or proteome of an organ-
ism, as opposed to the genomics focus on the entire genetic content. The term proteome
was first used circa 1995 by various researchers [WC95] in order to describe the protein
complement of a genome 3

2In the 95th meeting of the American Society of Microbiology, May 21–25, Washington DC, simultaneously
by Craig Venter (TIGR) and Hamilton Smith (Johns Hopkins)

3 The term genome was coined by H. Winkler in 1920. Winkler created it from the words GENes and
chromosOME to denote the complete set of chromosomes and their genes. While artificial at its beginnings,
genome has since found its way into the English language. The American Heritage Dictionary of the English
Language defines it as “The total genetic content contained in a haploid set of chromosomes in eukaryotes,
in a single chromosome in bacteria, or in the DNA or RNA of viruses” or simply as “An organism’s genetic
material”. The word proteome, however, is still artificial and denotes, in accordance with the term genome,
the complete set of chromosomes and their encoded proteins.
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The proteome, unlike the genome, is not static. Each cell contains all the information
necessary to build a new organism, but only a subset of the proteins encoded on its genome.
Some genes that code for proteins that are essential for cell function are expressed in almost
all cells, while other specialized proteins are only expressed in specific cell types [Lie02] Thus,
every organism has one genome but multiple proteomes. We can say that the proteome is
the genomic expression for a given set of environmental factors such as developmental state
(time) and cell differentiation (space).

3.3.1 Proteome and Complexity

Genome sequencing projects have flooded the scientific community with vast amounts of
data and often unexpected and revealing results. With regard to proteins and complexity, we
found the following ones particularly intriguing: the rice genome contains more genes than
the human genome [GO02]; humans and their closest evolutionary relative, chimpanzees,
have 98.7 percent identical genomes [FO02]; and differences in brain composition among
humans and other primates are not so much due to differences in genetic make up as to dif-
ferences on gene expression [EO02]. The first two imply that the complexity of the organism
is not correlated with the number of genes on its genome. The last one clearly correlates the
proteome (expression of genes) with the organism’s complexity.

3.3.2 Separation of Roles

The natural process of evolution can be seen as a never ending search for a set of genes that
will fit a constantly changing environment. Nature developed a separation of functions 4
billion years ago when it evolved DNA and the genetic code. From that point on, this sepa-
ration of labor between DNA and proteins has proven to be useful tool for evolution. Nature
has found a competent information storage and replication structure, namely the genome,
and a competent functionality builder structure, the proteome, as well as a way to map
between them, the genetic code. The Proteomics Approach to Evolutionary Computation
reflects this perspective.
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3.4 From Genotypes to Phenotypes

Genetics, since Mendel’s early work on inheritance [Men65] , has focused on the study of
genes. 4 When Watson and Crick discovered the double helix shape of the DNA molecule
(1953) and its self-replicating properties, the idea of genes found a concrete foundation at
the molecular level as a unit of information storage and transmission. In this gene centered
approach, a gene creates a phene (i.e., “visible” character). Alteration of a particular gene by
mutation produces different “gene types” or alleles that can create different “phehe types”
or variations of the visible character associated with that gene. The set of all possible alleles
for a given gene is known as the genotype, and the set of all variations in visible characters
produced by the genotype is known as the phenotype.

According to the Oxford Dictionary of Genetics [KS97], the term phenotype is defined
as the observable properties of an organism produced by the genotype in conjunction with
the environment. In contrast with classical genetics where phenotypes are considered to be
observable properties such as the color and shape of pea seeds, modern genetics defines phe-
notypes at various observable levels of gene expression. As a result, we can now distinguish
between morphological, physiological, biochemical, and molecular phenotypes. Molecular
phenotypes includes protein phenotypes and mRNA phenotypes. The above definition of
a phenotype seems to imply a linear and progressive genotype-phenotype relationship, but
this implication is not true. While the relation between a gene and its expression at the
mRNA and protein levels is more or less linear, 5 the relationship between genotypes and
higher levels of expression, i.e. physiological or morphological phenotypes, is not. In fact, a
phenotypic trait can be the product of more than one gene. Most likely, it is the product
of several genes that contribute to the trait in different degrees in conjunction with envi-
ronmental factors in a non-linear complex way. Furthermore, there are multiple levels of
feedback between the genotype and phenotype. A gene expressed as a protein can interact
with other molecules in the environmental vicinity to activate the expression of a different
gene. This cycle of gene expression changing the environment and environment triggering
expression of other genes contribute to the complexity and non linearity of the genotype to
phenotype mapping. For instance, see [Ott04].

If we were, however, to define the functionality of a particular gene, on which level of
expression, from mRNA to external traits, should we look? In other words, what is the
basic functional structure associated with a given gene? As explained by Klose [Klo00], the
DNA level—the information structure—provides us with no functional information. The
mRNA level begins to provide some functional information because the concentration of
mRNA strands correlates with the expression activity of their corresponding genes. This
mRNA concentration however does not necessarily correlate with protein production. Hence,
quantitatively, mRNA is also not very informative with regard to gene function. The next

4Gregor Mendel call them “factors”.
5In the sense that every protein is synthesized from one gene; however, if we take into consideration gene

regulation, the production of proteins (expression of a genes) is regulated by multiple other genes.
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level of gene expression, the protein level, exhibits a high degree of correlation with gene
function, providing a significant amount of functional information. Proteins provide the
molecular structures and properties needed to achieve functionality. Above the protein level,
the process of gene expression becomes more complex. The path from genotype to phenotype
enters the network of gene regulation and, in a more general sense, the network of metabolic
pathways. These networks obscure the contributions of a particular genotype to a given
phenotype. Many genes contribute to cascades of metabolic reactions that lead to higher
level phenotypes, eventually leading to external genetic traits.

Consequently, while genes are the fundamental units of information storage and repli-
cation, proteins seem to be the most adequate functional structures associated to a given
gene. In the path from genotypes to phenotypes, the functional importance of proteins is
twofold. First, in isolation, proteins reflect to a great extent the basic functionality of their
corresponding genes. Second, in conjunction with other proteins, they contribute, as basic
building blocks, to the construction of increasingly complex functionalities.
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CHAPTER 4

PROTEOMICS APPROACH

“The development of our species is more the result of changes in gene expression than the
acquisition of new, specifically human genetic information”

“...The success of the first transgenic experiments thus came as a complete surprise: in most
cases, if a gene was inserted somewhere—anywhere—into the genome, it had the same effect as in

its endogenous position...These results have since been confirmed over and over again.”

–MICHEL MORANGE, “The Misunderstood Gene”, 2001

Representational approaches to the EC complexity problem share the following underly-
ing principle. They propose representations based on simple building blocks that self-organize
into complex functions. The proteomic approach makes this underlying principle explicit by
characterizing these basic representational building blocks as proteins, the basic building
blocks of life. Therefore, the proteomic approach serves as a unifying framework for many
biologically-inspired representational approaches such the ones based on development, mor-
phogenesis, and self-organization.

4.1 The Proteomics Approach to Evolutionary Computation

The proteomic approach to evolutionary computation is a representational approach to the
EC complexity problem. It is inspired by the central dogma of molecular biology and based
on the fact that proteins are the basic building blocks of life. This approach attempts to
capture the way in which nature has evolved extremely complex solutions in response to
complex environments with apparent ease.

4.1.1 Representation

Traditionally, EC problem representation is confined to defining the mapping between an
internal representation space and the space of solutions (Figure 4.1). This mapping is crucial
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Figure 4.1: Typical representation mapping. Problem representation is based on the indi-
vidual’s genome.

to the success of evolutionary techniques since it determines the complexity of the space that
the algorithm will explore as well as the complexity of the members of that space. In the
proteomic approach, problem representation is not a simple mapping but rather a complex
set of interactions among represented components (Figure 4.2). The encoded information in
a genome are building blocks that assemble into a solution via these interactions. Therefore,
there is a fundamental need for an interaction space that allows representational building
blocks to self-organize; this interaction space for proteins is defined by the physics and
chemistry at the molecular level. The simplest possible way to realize this space for initial
studies is a multiset of symbols.

4.1.2 Functional Units

In traditional EC, it is the arrangement and value of the genes that completely determines
candidate solutions. In the proteomic approach, the arrangement of the genes has no effect.
Each gene encodes one type of functional representational building block. The interaction
of these functional building blocks, in the interaction space, assembles candidate solutions.
The amount of functional building blocks in the interaction space is determined by how
many times a given gene is expressed. The required proportion of these building blocks
is determined by gene expression mechanisms and the assembly of the candidate solution
is done via self-organization of these functional building blocks in a pre-defined interaction
space with predefined interaction rules.
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Figure 4.2: Evolutionary algorithms encode instances of solutions in artifical genomes. De-
signing this encoding is known as the problem representation. In the proteomics approach
to evolutionary computation, we propose intermediate structures analogous to a proteome
and related interaction networks. Basic building blocks are represented in the genome but
the ultimate functionality of the representation will emerge from the building block network
of interactions.
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4.2 Fundamental Aspects of the Proteomics Approach

The proteomic approach captures the underlying principle of many representational ap-
proaches: basing problem representation on basic representational building blocks that in-
teract and self-organize into complex functions or designs. This principle is made explicit
by using protein-analogous structures as basic building blocks for problem representation.

The following are the two fundamental aspects of the proteomics approach:

• Proteins interact in a three dimensional medium analogous to a soup or multiset.

• Proteins are functional structures.

This thesis focuses on the study of the first issue for several reasons. First, the first aspect
is foundational for the understanding of the second aspect because the functionality of the
proteins is expressed as interactions in this protein multiset. Second, the way in which
proteins interact to build complex biological functionality is currently subject of intense
study [OB02, JTA00, Rav02, Rav02] but the principles involved are not yet well understood.
What is well established is the central dogma of molecular biology upon which we base the
study of the first aspect. Finally, there is a practical mathematical realization for the first
aspect of the genome to proteome transition: string to multiset mapping.

4.3 Proteome-Based Location Independent Representations

Incorporating the first aspect into EC problem representation causes a fundamental depar-
ture from traditional EC methods. Using a “content” oriented structure such a multiset
of proteins instead of a traditional “order” oriented structure such a string of genes as the
basis for problem representation results in a completely location independent representation
in which the location of the genes in the genome has no effect on the fitness of the solutions.
We call these representations proteome-based location independent representations. In these
representations, each individual is represented using a multiset of symbols from a given al-
phabet, and no functional aspects of proteins or their possible interactions are considered
(see Figure 4.3). In the next chapter, we offer a detailed description of an implementation
of a proteome-based location independent representation for rational numbers using a ge-
netic algorithm. We call the resulting implementation the proportional genetic algorithm
(PGA). This implementation will be used throughout this thesis as a framework to study
proteome-based location independent representations.
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Figure 4.3: Proteome-based location independent representation: problem representation is
based on the individual’s proteome (multiset of proteins).
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CHAPTER 5

THE PROPORTIONAL GENETIC ALGORITHM

“Gerrymandering is one of the great political curses of our single-member district plurality system
and one that can only truly be lifted by adopting proportional representation.”

–DOUGLASS AMY, “Real Choices, New Voices”, 1993

“The towns you give ... are to be given in proportion to the inheritance of each tribe: Take many
towns from a tribe that has many, but few from one that has few.”

–NUMBERS 35:8, “The Bible”

We introduce a GA with a new representation format which we call the proportional GA
(PGA). Like a traditional GA, a PGA encodes solutions as linear strings. A PGA, however,
is a multi-character GA that relies on the existence or non-existence of genes to determine
the information represented. The information represented by a PGA individual depends only
on what is present on the individual and not on the order in which it is present. As a result,
the order of the encoded information can evolve in response factors other than the value(s)
of the solution, for example, in response to the search for tightly linked building blocks.
The PGA representation achieves location independence without the additional overhead of
“tags” or “location markers” that many existing location independent encodings must use.
In addition, a PGA is able to dynamically adapt the resolution of encoded information.

5.1 The Proportional GA Representation

If one considers the DNA level of encoding information in a genome, it appears to be very
similar to a traditional GA encoding. The system is looking for a desired sequence or pattern
of “characters” whose encoding provides a desired value. Characters are chosen from a fixed
alphabet. The biological alphabet size happens to be four; the computational alphabet size is
typically two. A correctly ordered sequence contributes positively to an individual’s fitness.
An incorrect sequence contributes partial or no credit to an individual’s fitness. Order-based
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encoding is an essential component of DNA information representation. All of the basic
units of information that DNA can represent, i.e. genes, are encoded as ordered sequences.

If, however, we make the assumption that these basic units of information exist, and
move up to a genome level viewpoint, we see an entirely different picture of what is being
encoded. A biological genome encodes the collection of genes necessary to create a life form.
A gene is expressed when it is translated into a protein product and can only be expressed
if it exists on the genome. Multiple copies of a gene produces more of the protein for which
it encodes. The interaction of the expressed proteins within a cell makes life possible. At
this level, the key point is not the order of the encoded information, but the combination or
content of the encoded information on a genome. This viewpoint requires, of course, that
all of the “machinery” or encoding for the components (genes) that make up the content is
already there. By focusing on a more abstract view of the genome as a description of what
is available to interact within a cell, however, the existence or nonexistence of a gene has a
much greater impact than the location of a gene.

The PGA representation is based on this idea that it is the content rather than the order
of the encoded information that matters. We extend the idea of location independent atomic
units from section 2.2.1.3 to a more generally usable encoding for integer and floating point
numbers. Specifically, the PGA assigns one or more unique characters to each parameter or
component of a solution. The value of a parameter is determined from the proportion of the
characters assigned to that parameter as compared with the total number of characters in
the individual, or from the relative proportions of the assigned characters of that parameter.
Thus, characters that exist are “expressed” and, consequently, interact with other expressed
characters. Characters that do not exist are “not expressed” and simply do not participate
in the interactions of the expressed characters. This representation may be further extended
with the addition of non-coding characters that are not associated with any parameters.
These non-coding regions are beneficial for fine tuning purposes.

5.1.1 PGA1

Initial examination of this representation suggests that it is a perfect fit for resource allocation
problems. Suppose we have a common pool of resources that must be divided among n users.
With a PGA, we would use an n-character alphabet with one character assigned to each user.
Each individual, regardless of length represents the total available resources. The proportion
of each user’s character on an individual gives the percentage of resource allocated to each
user. We will call this representation strategy PGA1.

For example, given a five user resource allocation problem, a PGA would require a mini-
mum alphabet size of a = 5. We can assign characters as shown in table 5.1. The percentage
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Table 5.1: PGA1 character assignment in a five user resource allocation problem.
User U Character assignment, char(U)

U1 a
U2 b
U3 c
U4 d
U5 e

Table 5.2: Allocation of resources specified by example individual of length 50.
User U Number of char(U) Allocation

U1 9 a’s 0.18
U2 15 b’s 0.3
U3 5 c’s 0.1
U4 11 d’s 0.22
U5 10 e’s 0.2

of total resource allocated to each user, Ui, i = 0, ..., a− 1 is calculated by the equation

PPGA1(Ui) =
number of char(Ui) on individual

length of individual
.

As a result, the sum of all of the allocated resources must equal 1.0 (100% of the resources).
A typical individual such as

accaebbdbeeddbabbddebaabbdddebebadbecabebbedaacced

would generate the allocations shown in table 5.2. This individual is 50 characters long.
Note that the location of the characters play absolutely no role in the evaluation of the
individual. Thus, multiple individuals may generate the same solution and the individual

aaaaaaaaabbbbbbbbbbbbbbbcccccdddddddddddeeeeeeeeee

encodes the exact same solution as the first individual above.

5.1.2 PGA2

Unfortunately, many problems cannot be represented as pure resource allocation problems
where the sum of the components is constrained to a fixed value. As a result, additional
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Table 5.3: PGA2 character assignment in a five value problem.
Value V postive char(V ) negative char(V ) Vmin Vmax

V1 A a 0 10
V2 B b 0 10
V3 C c 0 10
V4 D d 0 10
V5 E e 0 10

Table 5.4: Allocation of resources specified by example individual of length 50.
Number of Number of Expressed

Value V postive char(V ) negative char(V ) pct(V ) value

V1 9 A’s 2 a’s 9/(9 + 2) 8.18
V2 3 B’s 9 b’s 3/(3 + 9) 2.5
V3 3 C’s 5 c’s 3/(3 + 5) 3.75
V4 4 D’s 4 d’s 4/(4 + 4) 5.0
V5 7 E’s 4 e’s 7/(7 + 4) 6.36

modifications must be made to the PGA representation to encode solutions for other types
of problems.

We focus on the common problem format involving a search for a vector of values (either
integer or floating point). Given a problem in which we are searching for a = 5 parameter
values, Vi, i = 0, ..., a− 1 and the range of each value is given by Vi,min and Vi,max. We define
a second PGA strategy called PGA2 in table 5.1.2. The number of “positive” and “negative”
characters on an individual are used to calculate

pct(Vi) =
positive char(Vi)

positive char(Vi) + negative char(Vi)

where i = 0, ..., a− 1 and 0.0 ≤ pct(Vi) ≤ 1.0. The value of each parameter is calculated by
the equation

PPGA2(Vi) = Vi,min + pct(Vi)× (Vi,max − Vi,min).

A typical individual of length 50 such as

AccBdDeeEbAbBDEccaAAAEebbEEECCDbbbABCDEedcbaAAddbA

would generate the parameter values shown in table 5.4. As with PGA1, the evaluation of
a PGA2 individual is completely independent of the arrangement of characters. Thus, the
individual
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Table 5.5: Allocation of resources specified by example individual of length 50.
Number of Number of Expressed

Value V postive char(V ) negative char(V ) pct(V ) value

V1 9 A’s 2 a’s 2/9 2.22
V2 3 B’s 9 b’s 3/9 3.33
V3 3 C’s 5 c’s 3/5 6.0
V4 4 D’s 4 d’s 4/4 1.0
V5 7 E’s 4 e’s 4/7 5.71

AAAAAAAAAaaBBBbbbbbbbbbCCCcccccDDDDddddEEEEEEEeeee

also evaluates to the values shown in table 5.4.

5.1.3 PGA3

We attempt to simplify PGA2 by modifying the equation for pct(Vi). In the new method
called PGA3,

pct(Vi) =





positive char(Vi)
negative char(Vi)

if positive char(Vi) < negative char(Vi)

negative char(Vi)
positive char(Vi)

otherwise

where i = 0, ..., a− 1 and 0.0 ≤ pct(Vi) ≤ 1.0. The value of each parameter is still calculated
by the equation

PPGA3(Vi) = Vi,min + pct(Vi)× (Vi,max − Vi,min).

With PGA3, both individuals

AccBdDeeEbAbBDEccaAAAEebbEEECCDbbbABCDEedcbaAAddbA

AAAAAAAAAaaBBBbbbbbbbbbCCCcccccDDDDddddEEEEEEEeeee

generate the parameter values shown in table 5.5. Initial experiments suggest that the
behavior of PGA2 and PGA3 are very similar.
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5.1.4 PGA Further Enhancements

The adaptability of all three of the PGA variations described above can be further enhanced
in two ways.

5.1.4.1 Variable Length Individuals

Because of the location independence of the PGA representation, it can easily be modified to
work with variable length individuals. Variable length individuals allows a PGA to control
the amount of computational effort it expends during a run. Using shorter individuals
requires less computational effort. In addition, this modification would allow a PGA to
control the resolution at which it encodes values. Longer individuals would allow finer
resolution. The minimization of computational effort would likely need to be balanced
against the need for adequate resolution.

5.1.4.2 Non-coding Regions

Non-coding regions can easily be added by including, as part of a PGA’s alphabet, characters
that are not assigned to any parameter values. These characters would not be directly
involved in encoding information on an individual; however, they may affect the values
represented by an individual by changing the overall length of individuals. Non-coding
regions are expected to help a PGA “fine-tune” the values encoded on its individuals. In a
fixed length system where the length is unsuitable for the required resolution, non-coding
regions may be introduced to compensate for suboptimal length. This effect is expected to
be more prevalent in PGA2 and PGA3 than PGA1 because of the nature of the problems
on which PGA1 can be applied.
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CHAPTER 6

MATHEMATICAL ANALYSIS

“Combinatorics ... began in ancient times. According to legend the Chinese Emperor Yu (c. 2200

B.C.) observed the magic square




4 9 2
3 5 7
8 1 6


 on the back of a divine tortoise.”

–HERBERT RYSER, “Combinatorial Mathematics”, 1963, pp.1

This chapter provides answers for the following questions:

• Question: In order to represent solution spaces of equal size, what are the resources
needed—in terms of genome length and alphabet—by proteome-based representations
as compared to traditional genome-based representations? What is the role of the
mapping function g (growth function) in this context?

Method: Quantitative analysis of strings to multisets transformations using basic com-
binatorics.

Relevance: Quantization analysis provides the basis for a fair comparison among ap-
proaches with different intermediate mappings. We state that, for a fair comparison,
the algorithms should both target problem spaces that are identical in size regardless of
the representation space size. In other words, they should be searching among the same
number of solutions regardless of the number of repetitive representations available for
a single solution.

• Question: What are the probabilities of finding a solution on a genome-based repre-
sentation space as compared with a proteome-based representation space? Based on
NFL results [WM95], if any, what are the problem classes that characterize proteome-
based representations, i.e., problem classes for which proteome-based representations
outperform other search approaches?

Method: Statistical analysis using random sampling.

Relevance: This analysis characterizes the influence of neutral classes on the proteome-
based representation space. It also shows the differences of comparing binary and
proteome-based representations in the case both have the same genotype space size
and when both have the same phenotype space size. Finally, corroborates the no free
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Table 6.1: Possible solutions using a PGA with binary alphabet and length 8.
Number of 0’s Number of 1’s

8 0
7 1
6 2
5 3
4 4
3 5
2 6
1 7
0 8

lunch theorem, in the sense that, when randomly sampling representation spaces, both
representations have in average the same chances to find solutions.

6.1 Resolution Analysis

We would like to compare the performance of a PGA with that of a canonical GA; however,
their fundamentally different representations make it difficult to determine what would be a
fair comparison. For example, a GA using a binary alphabet and individuals of length 8 can
encode 28 = 256 different solutions. Table 6.1 shows that a PGA using the same alphabet
and length can encode 9 unique solutions. Obviously it will be easier to find a solution with
the PGA; however, the PGA is representing a much smaller and coarser solution space, i.e.
trying to solve an easier problem. Increasing the alphabet size of the PGA to three increases
the number of unique solutions to 45 (see Table 6.2). The selected length and alphabet size
affects the resolution of the solution spaces that each algorithm can represent.

We assert that, to fairly compare two search algorithms, they must search for a solution
from among the same number of potential solutions, that is, within equal sized solution
spaces. As a result, we will focus on determining metrics that would allow a GA and a
PGA to represent a problem at the same resolution. To do so, we analyze the effects of
the multiset approach of the PGA on its genotype-phenotype mapping; we analyse the
formation of neutral classes; and produce an equation for determining the GA and PGA
solution structures required to represent the same solution space.
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Table 6.2: Possible solutions using a PGA with alphabet size 3 and length 8.
Number of A’s B’s C’s Number of A’s B’s C’s Number of A’s B’s C’s

8 0 0 3 5 0 1 6 1
7 1 0 3 0 5 1 1 6
7 0 1 3 4 1 1 5 2
6 2 0 3 1 4 1 2 5
6 0 2 3 3 2 1 4 3
6 1 1 3 2 3 1 3 4
5 3 0 2 6 0 0 8 0
5 0 3 2 0 6 0 0 8
5 2 1 2 5 1 0 7 1
5 1 2 2 1 5 0 1 7
4 4 0 2 4 2 0 6 2
4 0 4 2 2 4 0 2 6
4 3 1 2 3 3 0 5 3
4 1 3 1 7 0 0 3 5
4 2 2 1 0 7 0 4 4

6.1.1 Notation

In the section, we will formalize the terms individual and genotype to refer, interchangeably,
to fixed length strings over an alphabet. Typically, GA individuals are strings over a binary
alphabet while PGA individuals are strings over a higher-arity alphabet.

We introduce the following notation: representation (genotype) space, G〈l,Σ〉 = {gi}, the
set of all genotypes, gi, of length l over alphabet Σ; and solution (phenotype) space, P = {pj},
the set of phenotypes, pj, which are strings of length l for a GA and multisets1 of length l
for a PGA. The mapping between spaces is M : G〈l,Σ〉 7→ P , hence pj = M(gi). Figure 6.1
illustrates this notation.

Let A be a GA with individuals of length lA over an alphabet ΣA = {σ1, σ2, . . . , σnA}.
Let the cardinality of the alphabet be |ΣA| = nA. Let A’s representation space, solution
space, and mapping be denoted by G〈lA,ΣA〉, PA, and MA, respectively.

Similarly, let B be a PGA with length lB and alphabet ΣB = {σ1, σ2, . . . , σnB} with
cardinality of |ΣB| = nB. Let B’s representation space, solution space and mapping be
denoted accordingly by G〈lB,ΣB〉, PB, and MB.

1Multisets—also known as bags—denoted on this work by {|, , , |}, are analogous to sets, except that they
may contain multiple copies of identical elements. The number of occurrences of an element in the multiset
is called the multiplicity of the element.
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Figure 6.1: Representation and Solution Spaces

6.1.2 The PGA Mapping

For the GA, A, the representation space and the solution space are the same size, (nA)lA ,
and the genotype-phenotype mapping, MA, is trivial—one-to-one and onto from strings
to strings—in fact, the identity mapping. For the PGA, B, the size of the representation
space is similarly (nB)

lB , but the genotype-phenotype mapping, MB, will map strings onto
multisets instead of strings to strings. This mapping is, in general, many-to-one and onto,
and leads to a solution space that is smaller than its corresponding representation space.
The number of elements in each of these multisets is the same as the genotype length. The
mapping, MB, represents the essence of the PGA idea: every string is mapped according
to the multiplicity of its elements regardless of the arrangement of the elements. In general,
multiple strings will map onto the same multiset. The only exceptions are those strings that
contain only one kind of element; i.e., for l = 4 and Σ = {a, b}, the string “aaaa” is the
only one that maps onto the multiset {|a, a, a, a|}, while all of the following strings: “aaab”,
“aaba”, “abaa”, and “baaa”, map onto the same multiset, {|a, a, a, b|}.

Using basic combinatorics results [Rys63], we can calculate the exact number of strings
that map to each multiset as function of their multiplicities. For this effect, let η(pj) denote
the number of strings on the genotype space which map to the multiset pj as shown in
Figure 6.2.

It is easy to show that:

η(pj) =
(lB)!

nB∏
i=1

(|pj|σi
)!

(6.1)

42



Figure 6.2: Neutral Classes in the PGA mapping

where, pj = {|ςj1, ςj2, . . . , ςjk, . . . , ςjlB |} is the jth multiset in PB; ςjk ∈ ΣB for k = 1, . . . , lB;
|pj|σi

denotes the multiplicity (number of occurrences) of σi in the multiset pj; and σi ∈
ΣB = {σ1, σ2, . . . , σnB}.

In the same way, we can also calculate the total number of multisets produced by the
PGA mapping for a given representation space. Using basic combinatorics, it is easy to show
that the total number of multisets produced by the PGA mapping

MB : G〈lB,ΣB〉 7→ PB
is (

nB + lB − 1

lB

)

As the set of all the multisets obtained by MB constitute the phenotype space PB, the size
of this space, denoted |PB|, is given by:

|PB| =
(

nB + lB − 1

lB

)
(6.2)

6.1.3 Neutral Classes

The information represented by a PGA individual depends only on what is present on the
individual and not on the order in which it is present. As a result, the PGA representation
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is fully redundant, since every possible rearrangement of the same genes, and also any other
arrangement that preserves the original proportion among genes expresses the same infor-
mation 2 . These neutral networks raise into consideration the scenario of an evolutionary
dynamic in which populations rather than being driven to climb hills by a demanding selec-
tion pressure, traverse along connected networks of genotypes with equal fitness. Selection
pressure becomes, in this scenario, the driving force behind sporadic jumps between these
networks.

PGA redundancy allows neutral classes to form naturally in the PGA representation
space. A neutral class is defined as the set of genotypes that maps to the same phenotype.
The number of neutral classes as well as their corresponding sizes are determined by the
mapping between spaces, M. Each element of the phenotype space has a unique associated
neutral class and vice versa. Note that the set of neutral classes is a partition of the genotype
space.

For the PGA mapping, MB, the size of the neutral class associated with the phenotype pj

is given by η(pj) in Equation (6.1), and the number of neutral classes formed in the genotype
space by this mapping equals the size of the phenotype space, |PB|, given by Equation (6.2).

6.1.4 Resolution

Let us consider a problem in which we are searching for a single parameter value with a given
resolution, i.e., searching for a number between 0 and 100 with a resolution of 0.1. In this
problem, the solution space would need to consist of at least 100 × 10 = 1000 elements to
accommodate the required resolution of the search. As a result, an evolutionary algorithm
applied to this problem must be able to represent at least 1000 elements in its solution space
to find an accurate solution. In order to fairly compare two algorithms set to solve this
problem, both of them should have the same solution space size.

Therefore, in order to compare GA A and PGA B, their solutions spaces should be of
the same size, that is:

|PA| ≡ |PB| (6.3)

The size of the phenotype space for GA A is:

|PA| ≡ (nA)lA (6.4)

We use (6.2) and (6.4) to rewrite (6.3) and obtain:

2Note that since we only require the conservation of the relative gene proportions, the size of each neutral
network produced is virtually unbounded for an unbounded variable length representation.
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(nA)lA =

(
nB + lB − 1

lB

)
(6.5)

Equation (6.5) is important because it describes the relationship between the lengths and
alphabet sizes of an arbitrary GA and PGA that would ensure resulting solution spaces of
equal size.

6.1.5 Examples

The resolution analysis verifies two facts about the PGA proteome-based location indepen-
dent representation. First, this representation is redundant. As a result, PGA represen-
tations need larger representation spaces than non-redundant representations such binary
encoding. Second, the PGA proteome-based location independent representation redun-
dancy is not uniform over the representation space but is seriously biased. It over-represents
individuals that contain the greatest possible diversity of symbols and under-represents indi-
viduals with low symbolic diversity. The following examples serve to illustrate these points.

Example 1. Consider a binary representation with individuals of length lA = 8 over
an alphabet ΣA = {0, 1}, and |ΣA| = nA = 2. It is evident that the representation space
and the solution space for this case are of size 28 = 256. Now let us consider a PGA with
a comparable solution space. Using equation 6.5, we calculate one possible solution pair:
lB = 10 and nB = 4. Let us choose without loss of generality a particular four-letter alphabet:
ΣB = {α, β, γ, δ}. For this setting, the size of the solution space is:

(
nB + lB − 1

lB

)
=

(
4 + 10− 1

10

)
= 286

This solution space is slightly larger than in the binary case (256) but a good approximation
considering that lB and nB have to be integers. The question now is: how large is the
resulting representation space? The answer is:

(nB)
lB = 410 = 1, 048, 576

Therefore, in this example, the PGA needs a representation space 3,666 times larger than a
binary GA to represent the same number of points in the solution space due to redundancy.

Example 2. In the example above, what is the largest neutral class? And what is the
smallest? We know from equation 6.7 that each string determines a different neutral class
of a particular size. For instance, let’s consider the following strings αααααααααα and
αααβββγγδδ. Using equation 6.7 we calculate the sizes of the neutral classes associated
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with these strings:

η(αααααααααα) =
(lB)!

nB∏
i=1

(|αααααααααα|σi
)!

=
10!

(10!)(0!)(0!)(0!)
= 1

The neutral class is of size one; therefore, there is no redundancy for this string. This result
is obvious as there is only one possible ordering for a string of all α’s.

η(αααβββγγδδ) =
(lB)!

nB∏
i=1

(|αααβββγγδδ|σi
)!

=
10!

(3!)(3!)(2!)(2!)
=

3628800

144
= 25200

The neutral class associated with string αααβββγγδδ has 25200 elements because there are
25200 alternative orderings for this string. All of them map to a single point in the solution
space, which is characterized by three α’s, three β’s two γ’s and two δ’s, regardless of their
order.

The two strings we have chosen are in fact representatives of the smallest and largest
neutral classes for this example. It is easy to show that the smallest neutral classes are always
of size one and that they are characterized by equal-symbol strings such as αααααααααα.
It is also easy to show that the largest neutral classes are characterized by the string that
has the greatest possible number of distinct symbols present in equal proportion, such as
αααβββγγδδ in our example.

6.2 Random Sampling Analysis

Consider the point ps ∈ P to be a distinguished point in the phenotype space as shown in
Figure 6.3. Let us call it the solution point.3

Let gs ∈ G be a point in the representation space that maps to ps. Let N (ps) be the set
of all such points, gsi

∈ G , that map to ps. Therefore, N (ps) is the neutral class associated
with ps.

Since there is exactly one neutral class associated with each element of P , we have |P|
neutral classes due to the mapping. The number of elements in each neutral class, |N (pj)|,
depends on the specifics of the mapping M.

3This point represents the phenotype with highest fitness, given a fitness function defined over the space
P.
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Figure 6.3: Solution point ps and its associated neutral class N (ps)

6.2.1 Probabilities for Finding a Solution

The probability of selecting a genotype that maps to ps by random sampling is given by:

Pr(ps) =
Number of genotypes that map to ps

Total number of genotypes

which can be rewritten as:

Pr(ps) =
|N (ps)|
|G〈l,Σ〉| (6.6)

where |N (ps)| is the size of the neutral class associated with ps.

Let us consider again GA A and PGA B. From the previous discussion we know that
the number of the neutral classes is the same as the number of elements in P . As a result,
|PA| and |PB| give us the number of neutral classes for A and B.

The number of strings in each class for A is trivial to compute. Since the mapping, MA,
is one-to-one and onto, there is exactly one string in each class. For B, the size of a neutral
class is given by Equation (6.1) and depends on the multiplicity of the associated multiset.
This multiplicity is the same as the multiplicities of each of the strings in the class defined
by the multiset. Hence, we can expand our definition of η to account for multisets as well
as for strings in the following way:

η(gsk
) =

(lB)!
nB∏
i=1

(|gsk
|σi

)!

(6.7)
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where gsk
∈ G〈lB,ΣB〉.

The size of the neutral class associated with ps is given by:

|N (ps)| = η(gsk
) (6.8)

We use Equation (6.6) to obtain the probabilities PrA(ps) and PrB(ps):

PrA(ps) =
1

(nA)lA
(6.9)

PrB(ps) =
η(gsk

)

(nB)
lB

(6.10)

6.2.2 The PGA Hypothesis

In order for PGA B to have an equal or better probability of finding a solution (ps) than
GA A, the following inequality must hold:

PrB(ps) ≥ PrA(ps) (6.11)

We call Equation (6.11) the PGA hypothesis. It simply states that the probability of
randomly selecting a genotype that maps to the solution is equal or higher in a PGA than
in a GA.

Substituting (6.9) and (6.10) into (6.11) and rearranging the terms we get:

η(gsk
) ≥ (nB)

lB

(nA)lA
(6.12)

which is a general condition for the PGA hypothesis to hold. This equation depends on
parameters such as length and alphabet cardinality, as well as depends on the choice of the
desired solution ps.

Observe that for the case in which A and B have the same sized representation space,
|G〈lA,ΣA〉| ≡ |G〈lB,ΣB〉|, Equation (6.12) reduces to:

η(gsk
) ≥ 1 (6.13)

which always holds. Hence, in this case, subject to the choice of ps, a PGA always has a
better or equal chance of finding a solution than a GA.
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In the case where |PA| ≡ |PA|, Equation (6.12) reduces to:

η(gsk
) ≥ (nB)

lB
(

nB+lB−1
lB

) (6.14)

In this case, either the PGA or the GA could have the advantage, depending on the choice
of ps.

6.2.3 Average Probabilities Over All Solutions

Since the previous results depend heavily on the choice of ps, let us analyze the average of
all possible choices of ps. Note that ps affects the above equations by changing the size of
the associated neutral class. Consequently, to analyze the average behavior of all possible
choices of ps, we will compute the average size of all of the neutral classes (all possible choices
of ps).

Let η̂ denote the average size of all neutral classes for a given representation space:

η̂ =

∑

{gr | MB(gr) 6=MB(gt) ∀ r 6=t}

[
η(gk)

]

(
nB+lB−1

lB

)

Since the sets of all neutral classes are a partition of the representation space, the summation
of all of the neutral class sizes is the size of the space:

∑

{gr | MB(gr) 6=MB(gt) ∀ r 6=t}

[
η(gk)

]
= |G〈lB,ΣB〉|

Thus, η̂, the average size of all neutral classes over a representation space, is given by the
following equation as function of the parameters defining the space itself:

η̂ =
(nB)

lB
(

nB+lB−1
lB

) (6.15)

At this point, we can replace in our previous equations the specific size of a neutral class,
η, with the average size over all possible neutral classes in a representation space, η̂, to yield
results that are independent of ps.

Replacing η with η̂ on Equation (6.12) and rearranging terms we obtain the condition
for the PGA Hypothesis to hold in the average case:
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(nA)lA ≥
(

nB + lB − 1

lB

)
(6.16)

Equation (6.16) is independent of the choice of ps (solution point) because η has been aver-
aged over all possible choices of ps. Note from this equation that the PGA hypothesis will
hold if and only if:

|PB| ≤ |PA| (6.17)

Equation (6.17) tells us that, in order for a PGA to have an advantage, the PGA solution
space cannot be larger than the GA counterpart. But equation (6.3) states that both solution
spaces should be equal for a fair comparison. Hence, the probability that a PGA will find
a solution is, on average, equal to the probability that a GA will find a solution when both
solution spaces are equal in size. In order for a PGA to have a greater probability of finding
a solution, the PGA must be searching in a solution space that is smaller than that of the
competing GA.

Equation (6.13) considers the case of |G〈lA,ΣA〉| ≡ |G〈lB,ΣB〉|. Using the average value of η,
η̂, we obtain:

η̂ ≥ 1

Replacing η̂ with its value from Equation (6.15), we get:

(nB)
lB

(
nB+lB−1

lB

) ≥ 1

This equation holds only for the inequality. Thus, the PGA hypothesis holds as an inequality.
As a result, when a PGA and GA have representation spaces of same size, a PGA will have,
on average, a better chance of finding a solution than a GA.

Equation (6.14) examines the case where |PA| ≡ |PA|. Using η̂ we can now obtain:

η̂ ≥ (nB)
lB

(
nB+lB−1

lB

)

(nB)
lB

(
nB+lB−1

lB

) ≥ (nB)
lB

(
nB+lB−1

lB

)

In this case, the equation holds only for the equality. Thus, the PGA hypothesis holds as
equality. With solution spaces of the same size, a PGA has, on average, similar chances of
finding a solution as a GA.
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6.3 Discussion

This chapter provides a resolution analysis and a random sampling analysis of PGA proteome-
based location independent representation and the GA binary representation. Using combi-
natorics, we provided closed form expression for the relationship between individual lengths
and alphabet sizes that will result in comparable solution spaces. This analysis indicates that
in order to encode the same amount of information, proteome-based location independent
representations require significantly larger alphabets of symbols than traditional representa-
tions. This chapter also provides a closed form expression for the sizes of the neutral classes
and observes that the redundancy introduced over-represents individuals with high symbolic
diversity and under-represents individuals with low symbolic diversity.

Using these two expressions it calculates the probability of finding a solution in either rep-
resentation space by random sampling. This analysis indicates that proteome-based location
independent representations and binary representations have, on average, similar chances of
finding a solution. It also shows that for a particular solution, one or the other representation
may have the advantage depending of the size of the neutral class associated with the chosen
target solution.
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CHAPTER 7

EMPIRICAL ANALYSIS

This chapter experimentally compares the three variations of the PGA described in sec-
tion 5.1 with a canonical GA. Specific questions addressed in the experiments include:

1. How does a PGA compare to a traditional GA? Can a PGA perform at least as well
as a GA?

2. Does a PGA use non-coding regions as a means of “fine-tuning” the values it encodes?

3. Can a PGA regulate the length of its individuals to minimize computational effort
while maximizing performance?

4. Does a PGA encourage the formation of building blocks?

7.1 Experimental Setting

7.1.1 Test Problems

We study three types of problems in the experiments described here.

1. Resource allocation

2. Number matching

3. Symbolic regression

All of these problems require a GA to find five values.

The resource allocation problem is a search for a series of values that sum to a predefined
value. This type of problem appears to be a perfect fit for the PGA encoding. We compare
the behavior of PGA1 with a GA on this problem.

The second two problems search for a series of numbers that do not have to sum to a
predefined value. Many real world problems can be mapped to one of these general problem
types. In number matching, all values have equal weight. In symbolic regression, some values
may have greater affect on fitness. We compare both PGA2 and PGA3 with a GA on these
two problems.
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Table 7.1: GA parameter settings.
Population size : 200
Maximum number of generations : 500
Selection method : tournament
Crossover type : two-point (fixed len),

homologous (variable len)
Crossover rate : 1.0
Mutation rate : 0.01, 0.005

7.1.2 GA Configuration

Table 7.1 gives the parameter setting used in these experiments. Each experiment was run
100 times and the results averaged over all runs.

Our GA uses a binary representation consisting of a field of eight bits for each of the
five values for a total length of 40 bits. We can use Equation (6.5) from section 6.1.4 to
calculate the appropriate PGA lengths for our comparisons. For each of our five values, we
have nA = 2 and lA = 8, as our GA is binary and eight bits are allocated per value. For
the PGA we have nB = 2 as each parameter is represented with an alphabet size of two 1.
Entering these values into Equation (6.5) and solving for lB, we obtain lB = 255. Therefore,
255 is the equivalent length that a PGA would require to encode a single parameter value
with the same resolution as the GA. As a result, the PGA representation would need a
genome length of 255× 5 = 1275 to encode the same resolution as the GA.

In addition to the simple PGA representation, we also test extensions which include
non-coding regions and variable length individuals. We test a total of six variations of each
PGA:

PGA-40: Simple PGA with fixed length individuals. The length of the individuals is the
same as the length of the individuals in the GA (40 bits).

PGA-255: Simple PGA with fixed length of 255 bits. As the full resolution of the PGA
requires a genome length of 1275, PGA-255 is still somewhat penalized with respect
to resolution; however, this PGA at least has the resolution of a single GA field. The
location independence of the PGA allow us to overlap all five values on the same
genome.

PGA-40-nc: PGA with fixed length individuals and non-coding regions. Length is same
as in PGA-40. One or more non-coding characters are added to the PGA alphabet.

1This is clear for PGA2 and PGA3 since the alphabets are separate; however for PGA1 we also have two
groups of characters for each value: one distinguished character and one group undistinguished characters—
the rest of the alphabet.
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PGA-255-nc: Same as PGA-40-nc with length of 255.

PGA-var: PGA with variable lengthed individuals. The maximum allowed length is set
at 2048 to ensure that the PGA would have as much resolution as it would need. Note
that this value is bigger than the required length of 1275. No parsimony pressure is
applied unless otherwise specified.

PGA-var-nc: PGA with variable lengthed individuals and non-coding regions.

7.2 Formation of Buidling Blocks and Regulation of Length and
Resolution Analysis

7.2.1 Resource Allocation Test Problem

The resource allocation problem involves the allocation of a fixed pool of resources among
five users.

The PGA1 encoding is described in section 5.1.1. A GA individual is decoded by first
calculating the binary values encoded in each field. Each value is then divided by the sum
of all of the values to produce a proportion between 0.0 and 1.0.

Given a = 5 target values or proportions, Ti, i = 0, ..., a − 1 where
∑

Ti = 1.0, and a
users Ui, i = 0, ..., a− 1, the encoded proportion assigned to each user is given by PPGA1(Ui)
(see section 5.1.1). We first calculate the ratio of each corresponding pair:

ratio(i) =





Ti

PPGA1(Ui)
if Ti < PPGA1(Ui)

PPGA1(Ui)
Ti

otherwise

This value gives an indication of how close each encoded value is to the corresponding target
value. The fitness of an individual is the average of all ratios:

fitness =

∑a−1
i=0 ratio(i)

a
.

A perfect match gives the maximum score of 1.0.
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Figure 7.1: GA -vs- PGA1 on resource allocation: Fitness of best solution found averaged
over 100 run and 95% confidence intervals.

7.2.2 Randomly Generated Target Allocations

Our first experiment simply compares the ability of a GA and PGA1 to find a set of target
proportions. To eliminate any unexpected bias, we randomly generate a set of target values,
Ti where

∑
Ti = 1.0, at the beginning of each run. As a result, each of the 100 runs

that make up this experiment are searching for a different set of target values. Figure 7.1
shows the average best solutions obtained from each algorithm tested with 95% confidence
intervals. The GA performs well, with an average best fitness of 0.9857. All of the PGA
variations except for the two using length 40 perform as well or significantly better than the
GA. PGA-255 performance is consistent with GA performance despite its resolution penalty.
Enhancing the PGA with either non-coding regions or variable length appears to significantly
improve performance. Although the PGAs with length 40 performed significantly worse, they
still provided respectable average fitnesses of 0.9382 and 0.9495. Table 7.2 shows detailed
results from this experiment. In addition to the best fitness value, we also track the number
of runs out of 100 in which a best fitness of 0.99 or higher was found — the number of
“hits”. The GA finds fitness values above 0.99 in 53 out of 100 runs. Except for the PGAs
of length 40, all other PGA runs are better able to achieve 0.99 fitness than the GA. The
variable length PGAs evolve significantly longer individuals than the fixed length values
tested. These lengths, however, are not unreasonable given the actual required resolution
of 1275. Applying parsimony pressure, as described in [BDG98], results in average lengths
that are about half of those shown above with essentally the same average best fitness value.
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Table 7.2: Results of PGA1 versus GA on finding randomly generated allocation values.
Average (and standard deviation) over 100 runs.

Algorithm Best fitness Hits ≥ 0.99 Genome length Time in sec.

GA 0.9857 (0.0120) 53 40 13.96 (1.24)
PGA-40 0.9382 (0.0483) 2 40 12.08 (0.65)
PGA-255 0.9869 (0.0110) 59 255 15.75 (4.38)
PGA-40-nc 0.9495 (0.0496) 1 40 12.48 (1.02)
PGA-255-nc 0.9955 (0.0063) 94 255 16.12 (3.66)
PGA-var 0.9941 (0.0189) 91 1813.56 (585.68) 46.86 (16.77)
PGA-var-nc 0.9963 (0.0135) 95 1810.30 (606.37) 47.53 (13.72)

All of our runs ran for 500 generations. The average clock time (in seconds) increases only
slightly when genome length is increased from 40 to 255. Variable length PGAs, however,
require significantly longer time to complete 500 generations of evolution.

7.2.3 Formation of Building Blocks

One of the expected advantages of the PGA encoding is that its complete location indepen-
dence would encourage (or, at the very least, not impede) the formation of building blocks
of related characters. Hypothetically, building blocks may be formed in two ways in the
PGA. First, related characters (all of a particular character) are arranged in close proximity
to minimize the chance of disruption by crossover. Second, all copies of each character are
spread evenly across the entire individual making any particular segment of an individual
essentially a building block (a miniature version of the full individual, albeit with coarser
resolution). We examine individual PGA runs in detail to determine if such building block
formation does occur.

We calculate the center of gravity and range for every character on every individual. The
center of gravity (CoG) of a character is the average of the locations of all instances of that
character on an individual. The range of a character is delimited by the two end-most copies
of the character. We normalize the positions on an individual to range from 0.0 to 1.0 where
0.0 refers to one end of the individual and 1.0 refers to the opposite end. CoG values will then
fall in between 0.0 and 1.0. Figures 7.2 and 7.3 show data from generation 500 of a PGA run.
The x-axis of these plots indicate each individual from the generation. The y-axis indicates

position on an individual with normalized position values (positions range from 0.0 to 1.0).
The Figure 7.2 gives the CoGs of all five characters in this PGA. The Figure 7.3 shows the
CoG and range of one specific character. By generation 500, all CoG values have evolved
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Figure 7.2: Center of gravity of characters on a population of PGA individuals.
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Figure 7.3: Range of characters on a population of PGA individuals.
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Table 7.3: Results of PGA1 versus GA on finding fixed resolution allocation values. Average
(and standard deviation) over 100 runs. A hit is a run that achieves the fitness of 0.99 or
higher. All fitnesses are 0.95 or higher.

Algorithm Best fitness Hits ≥ 0.99 Genome length Time in sec.

GA 0.9911 (0.0009) 80 40 5.23 (0.45)
PGA-40 1.0 (0.0) 100 40 3.34 (0.48)
PGA-255 0.9922 (0.0) 100 255 8.27 (0.45)
PGA-40-nc 1.0 (0.0) 100 40 3.76 (0.43)
PGA-255-nc 1.0 (0.0) 100 255 8.36 (0.48)
PGA-var 0.9997 (0.0003) 100 1460.33 (849.38) 53.62 (8.87)
PGA-var-nc 1.0 (0.0) 100 1129.86 (933.11) 50.63 (14.96)

close to the center of the individuals. The range of the characters appears to be spread out
over the entire individual. These results indicate that a PGA tends to form the second type
of building block where characters are distributed across an entire individual. Examination
of specific individuals supports this conclusion. Figure 7.4 shows an example individual from
a PGA run. Similar, repeated sequences are aligned for easier recognition. A high degree of
repetition and many similar building blocks are found throughout the individual. A shift in
the alignment used in figure 7.4 by one character produces an entirely new set of building
blocks containing approximately the same set of characters.

7.2.4 Regulation of Length and Resolution

To further investigate the PGA’s ability to regulate length and resolution, we next perform
an experiment with specific target values where the target allocations have the ratio 1:2:4:2:1.
The goals of this experiment are to test whether a PGA allocates an appropriate number
of characters to account for the desired resolutions and to test whether a PGA will vary or
minimize length in response to the resolution of the target values. The minimum number of
characters required to encode this distribution in a PGA is 10 characters. As a result, the
40 length used in our fixed experiments should be able to find a perfect solution.

Table 7.3 shows the results from this experiment. The GA is only able to find solutions
above 0.99 fitness in 80% of its runs while all PGA runs were able to find solutions above
0.99 fitness. PGA-40 easily found the optimum distribution in all runs. Because a length
that is a multiple of ten is required to achieve the optimum distribution, PGA-255 was not
able to achieve a fitness of 1.0; A standard deviation of zero and examination of individual
solutions, however, indicate that PGA-255 found the best possible solutions for its given
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Figure 7.4: Example of individual with repeated sequences.
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Figure 7.5: Best fitness per generation obtained by the GA, PGA-255, PGA-var,
PGA-255-nc, and PGA-var-nc for the resource allocation problem using randomly gener-
ated allocation values.

length. Adding non-coding regions to PGA-255 alleviates this problem: PGA-255-nc finds
all optimum solutions. Variable length PGAs, again, evolve significantly longer individuals
but application of parsimony pressure reduces average lengths to around 240. Despite the
large average length, two PGA-var runs generate solutions of length 10.

These results indicate that, given a problem whose resolution is achievable with the length
used by a PGA, that PGA will able to find a perfect solution and will outperform a GA.
Furthermore, a PGA that has the ability to adjust its resolution, e.g. by varying length
or amount of non-coding regions, will take advantage of these mechanisms to improve its
solutions. Parsimony pressure can be used to minimize solution length with very little fitness
penalty.

7.2.5 Generational Behavior of Best Fitness

Previous sections compare GA and PGA best fitness obtained over 500 generations. In this
section we present the generational behavior of GA and PGA best fitness for the resource
allocation domain. All results are averaged over 100 independent runs. Figure 7.5 shows the
best fitness per generation obtained by GA, PGA-255, PGA-var, PGA-255-nc, and PGA-
var-nc for the resource allocation problem with randomly generated allocations. We clearly
observe that all PGA variants take longer time to converge. The GA converges at generation
25, while even by generation 350 the PGA variants do not appear reach convergence. At
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Figure 7.6: Best fitness per generation obtained by the GA, PGA-255, PGA-var,
PGA-255-nc, and PGA-var-nc for the resource allocation problem using a fixed test allo-
cation(1:2:4:2:1).

generation 25, all PGA variants have worst best fitness than the GA; however, 75 generations
later, three PGA variants have already achieved better best fitness than the GA. The PGA-
var never obtains better fitness than the GA. Figure 7.6 is analogous to the previous figure,
but shows results for the resource allocation problem with fixed allocation values. In this
case, the GA also has a faster initial best fitness improvement than the PGA. At generation
14, all PGA variants have worst best fitness than the GA, but less than a dozen generations
later, all PGA variants have already achieved better best fitness than the GA. Appendix B
gives a complete collection of generational best fitness behavior data for the GA and the
PGA over the various problems discussed on this thesis.

From this experimental data we conclude that the PGA improves best fitness in a slower
and smoother fashion than the GA. Nevertheless, while the GA seems to converge quickly
to a fitness plateau, the PGA continues to improve best fitness and in many cases surpasses
the fitness plateau of the GA.

7.2.6 Sensitivity Analysis

In the previous sections, we offer results using various PGA resolutions such as PGA-40,
PGA-255, PGA-var, etc. In this section, we analyze the sensitivity of the PGA to various
crossover and mutation rates. We set up 15 experiments with different crossover and muta-
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Table 7.4: Crossover and mutation rates for the 15 experiments of the sensitivity analysis
Parameters

Experiment Crossover rate Mutation rate
e1 0.00 0.002
e2 0.00 0.005
e3 0.00 0.010
e4 0.50 0.000
e5 0.50 0.002
e6 0.50 0.005
e7 0.50 0.010
e8 0.75 0.000
e9 0.75 0.002
e10 0.75 0.005
e11 0.75 0.010
e12 1.00 0.000
e13 1.00 0.002
e14 1.00 0.005
e15 1.00 0.010

tions rates as shown in table 7.4. In each experiment, a GA and PGA1 are set to solve the
resource allocation problem. For all experiments we use PGA-var 2.

Figure 7.7 shows the fitness of the best individual over 20 runs for PGA1 and GA over the
15 experimental settings shown above. We observe that PGA manages to find the best fit
individuals for all 15 settings. Figure 7.8 shows the average fitness with the 95% confidence
intervals over the 20 runs. In this case, we observe that the GA average performance over
various parameter settings is quite stable. On the other hand, the PGA average performance
appears to depend heavily on the value of the mutation rate. PGA performs poorly on
experiments e4, e8, and e12, where the mutation rate is set to zero.

The suitability of the PGA to resource allocation problems is clearly demonstrated by
the above studies. The PGA is competitive and often outperforms the GA on such problems.
Most problems, however, cannot be encoded or interpreted as a resource allocation problem.
Thus for the PGA to be useful, we must be able to apply it to other types of problems. In
the next section we investigate PGA performance on two problems onto which many real
world problems may be mapped.

2for this experiments PGA-var has a fixed length of 1275, which is the exact comparable length as
described in section 7.1.2
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7.3 Performance Analysis

There are many problems which may be described as a search for a vector of values. These
values may be completely independent or may have dependencies among themselves. We now
examine PGA performance on two representative problems. The first problem is a simple
number matching problem in which we search for a set of five independent numbers. The
second problem is a symbolic regression problem in which we search for a set interdependent
numbers. We test two PGA encodings called PGA2 and PGA3 (described in section 5.1.2
and 5.1.3) on both of these problems.

7.3.1 Number Match Test Problem

The number match problem is a search for a = 5 independent values. The a independent
target values are randomly generated at the beginning of each run so that each run searches
for a different set of values.

The fitness function for this problem is the same as the fitness function for the resource
allocation problem. Given a target values, Ti, and a values decoded from a PGA individual,
PPGA(Vi), i = 0, ..., a−1, we first calculate the ratio of the smaller value divided by the larger
value.

ratio(i) =





Ti

PPGA(Vi)
if Ti < PPGA(Vi)

PPGA(Vi)
Ti

otherwise

The fitness of an individual is the average of all ratios:

fitness =

∑a−1
i=0 ratio(i)

a
.

Again, a perfect match gives the maximum score of 1.0.

7.3.2 Symbolic Regression Test Problem

Given a set of p data points, di, i = 0, ..., p− 1, the symbolic regression problem is a search
for a = 5 coefficients that, when plugged into the equation

f(x) = ax2 + bx + c + d cos(x) + e sin(x),

most closely approximate the target equation. Instead of trying to match the encoded coef-
ficient values to target values, the fitness function is calculated from the difference between
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Figure 7.9: GA -vs- PGA2 on number match: Fitness of best solution found averaged over
100 runs and 95% confidence intervals.

the target data points and the function values generated using the encoded coefficient values.
The ratio(i) at each data point is

ratio(i) =





di

f(x)
if di < f(x)

f(x)
di

otherwise

The fitness is the average of all ratios:

fitness =

∑a−1
i=0 ratio(i)

a
.

A perfect match gives a maximum score of 1.0. This problem differs from the number match
problem in that the a values are interdependent. Changes in a single value can affect the
impact of other values.

7.3.3 Results

Figure 7.9 and 7.10 compare the average best fitness and number of hits over 100 runs of
a GA and PGA2 variations on the number match problem. In both comparisons, PGA2
significantly outperforms the GA only when it has length 255. A length of 40 results in
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Figure 7.10: GA -vs- PGA2 on number match: Number of runs out of 100 that find solutions
with fitness 0.99 or higher.

a significant performance decrease; however, fitness values still reach well above 90%. The
addition of non-coding regions has little effect. A variable length PGA2 performs somewhat
better than PGA-40, but remains worse than the GA. The fact that variable length is less
beneficial with PGA2 than PGA1 is likely due to the more complex mapping from character
proportions to function values in PGA2.

Figures 7.11 and 7.12 compare the average best fitness and number of hits over 100
runs of a GA and PGA3 variations on the number match problem. Again, the best PGA
performance occurs when PGA3 has length 255. Those PGA3 runs reach equivalent fitness
values as the GA and slightly outperform the GA in hit count. PGA3 with length 40 performs
significantly worse as do the variable length PGA3s.

Figures 7.13 to 7.16 show the corresponding data for the symbolic regression problem.
The relative performances of the algorithms and the GA performances are similar on both
the symbolic regression and number match problems. All of the PGAs, however, perform
significantly better on the symbolic regression problem. (Note the narrower y-axis range.)
In particular, the PGAs with length 40 show a marked improvement in the number of hits.
PGA-255 with and without non-coding regions is able to achieve a 100% hit rate in all but
one experiment (which reaches 98).

In both the number match and symbolic regression problems, PGA2 performs slightly
better than PGA3. Non-coding regions appear to have very little effect. Variable length
individuals do give the PGA more flexibility, but appears to add too much complexity to the
search space. Simply giving the PGA a fixed but reasonable amount of resource with which
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Figure 7.11: GA -vs- PGA3 on number match: Fitness of best solution found averaged over
100 runs and 95% confidence intervals.
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Figure 7.12: GA -vs- PGA3 on number match: Number of runs out of 100 that find solutions
with fitness 0.99 or higher.
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Figure 7.13: GA -vs- PGA2 on symbolic regression: Fitness of best solution found averaged
over 100 runs and 95% confidence intervals.

to work seems to be the best, and relatively simple, solution. It is important to note that,
according the the calculations in section 6.1.4, comparing a GA of length 40 with a PGA
of length 255 still significantly penalizes the PGA. Presumably, increasing the length, and
thereby the resolution, of the PGA would result in even better performance.

7.4 Discussion

This chapter introduces a GA with a new representation method which we call the propor-
tional GA. The PGA is a multi-character GA that relies on the existence of genes rather
than the order of genes to encode information. The inspiration for the PGA comes from the
biological concept of gene expression: existing genes on a genome are expressed when they
produce protein products; the combination of expressed protein products interact to produce
life. Similarly, existing characters on a PGA individual are expressed and interact with the
other expressed characters from that individual to produce a candidate solution. Informa-
tion is represented in terms of the proportions rather than the ordering of the characters on
an individual. Statistically, a fairly matched GA and PGA should have, on average, equal
probabilities of finding a solution. Experimentally, the PGA appears to be able to generate
comparable behavior even with lowered resolution of expression.
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Figure 7.14: GA -vs- PGA2 on symbolic regression: Number of runs out of 100 that find
solutions with fitness 0.99 or higher.

0.98

0.985

0.99

0.995

1

CGA PGA-40 PGA-255 PGA-40-nc PGA-255-nc PGA-var PGA-var-nc

B
es

t f
itn

es
s

CGA vs PGA3: Symbolic regression

Figure 7.15: GA -vs- PGA3 on symbolic regression: Fitness of best solution found averaged
over 100 runs and 95% confidence intervals.
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Figure 7.16: GA -vs- PGA3 on symbolic regression: Number of runs out of 100 that find
solutions with fitness 0.99 or higher.

In section 7.1 we give a list of questions on which this chapter is focused. We now discuss
our conclusions with respect to those questions.

1. How does a PGA compare to a traditional GA? Can a PGA perform at least as well
as a GA?

Our initial studies indicate that the PGA can perform as well or better than a GA.
The determining factor for PGA performance appears to be its resolution. Given a
reasonable resolution, our PGA performances were comparable or better than the GA.
“Reasonable”, in this case, can still be significantly less that GA resolution (in our
experiments, five times less).

The PGA appears to be particularly well suited for resource allocation problems. A
PGA that has enough resolution to encode the target values will almost always find an
optimal solution. A PGA that does not have enough resolution, finds the best possible
solution for its given resolution. Given the opportunity, a PGA will adjust the length
of its evolved individuals to more closely match the required resolution of a solution.
The similarities between the PGA problem representation and the resource allocation
problem itself is thought to be a reason for the excellent PGA performance.

On the number match and symbolic regression problems, where the target values do
not sum to 1.0, the PGA performs comparably or better than the GA if it is given
enough resolution. The ability to vary individual length is less useful in these prob-
lems, presumably due to the more complex mapping between genotype and phenotype.
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Higher resolution appears to be the best method for improving PGA performance. In-
terestingly, while GA performance is similar for both problems, the PGA performs
significantly better on the symbolic regression problem. The explanation for this dif-
ferent is unclear at this point, but we note that both the resource allocation and
symbolic regression problems encode values that are dependent on each other.

2. Does a PGA use non-coding regions as a means of “fine-tuning” the values it encodes?

The impact of non-coding regions is unclear in these experiments. In general, the addi-
tion of non-coding regions did not produce any noticeable difference in PGA behavior.
The only instance in which non-coding regions improved performance significantly is
in the resource allocation problem when a PGA length that does not match perfectly
to form the target resolutions. In that instance, the PGA appears to use non-coding
regions as “padding” to achieve better target values.

3. Can a PGA regulate the length of its individuals to minimize computational effort
while maximizing performance?

Given the opportunity, a PGA will attempt to evolve the length of its individuals to
accommodate the required resolutions. Parsimony pressure can be used to minimize
length with, apparently, very little impact on fitness. The PGA successfully uses
variable lengths to solve the resource allocation problem. With the other problems,
however, variable length appears to be less useful than simply providing sufficient
resolution. As compared with insufficient resolution, however, variable length PGAs
achieve significantly better fitness values. Overall, the addition of variable length
individuals appears to be more beneficial than the addition of non-coding regions.

4. Does a PGA encourage the formation of building blocks?

The PGA forms building blocks by distributing copies of each character across an entire
individual. In a sense, any segment of an individual is a “building block” representing
a coarser version of the solution represented by the entire individual. As a result, the
solution represented by a single individual is extremely robust in response to changes
in the length as well as to crossover. Close examination of individual genomes finds
many repeated regions. The PGA does not form building blocks that consist of tightly
linked regions of the same character.

Our preliminary studies on the PGA have yielded very promising results and we plan
to continue development and analyses of the PGA representation. Despite the lowered
resolution of the PGA representation, PGA performance appears to be competitive with
GA performance and PGA runs appear to be taking advantage of the flexibility provided by
variable length individuals. Although well-suited to resource allocation problems, the PGA
representation can be modified to work successfully on other types of problems.
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CHAPTER 8

EMERGENCE OF GENOMIC

SELF-ORGANIZATION

In this chapter, we use the Proportional Genetic Algorithm (PGA), as described in chapter 5,
to study the emergent ordering of genomic symbols in the complete absence of selective
pressure for a particular order. We hypothesize that self-similarity emerges because self-
similar genomes are more robust with respect to crossover and mutation and because it favors
positive correlations between form and quality of candidate solutions. The PGA is a Genetic
Algorithm (GA) [Hol75a, Gol89] with a representation based on protein concentrations rather
than on the usual gene ordering. A PGA translates strings of genes into multisets of proteins
prior to fitness evaluation. As a result, there is no fitness pressure for any particular gene
ordering and the order of the genes is free to evolve along with the candidate solutions that
they encode. Section 7.2.3 shows that genomic symbols under these circumstances are evenly
distributed throughout the genome (see also [WG02]) and that they appear to form building
blocks of a peculiar type: coarse grained versions of the entire genome. In this chapter,
we ask the fundamental question: what is the emergent genomic ordering when there is no
selective pressure for any particular ordering?. We use two very different methods to analyse
the emergent genomic structure: equal-symbol correlation analysis, originally proposed by
Voss [Vos93] to analyse DNA structure, and an experimental method of our making to
analyse the self-similarity of genomic segments with repect to fitness. Our results can be
summarized as follows:

1. The equal-symbol correlation on PGA genomes resembles white noise behavior [GW04].

2. The emergent genomic structure is self-similar with respect to fitness.

8.1 Emergent White Noise Behavior

It has been shown using standard spectral density measurement techniques that individual
base positions in DNA sequences exhibit 1/f noise and long-range fractal correlations [Vos93].
From the evolutionary computation perspective, we pose the following question: What kind
of behavior do genomic symbols present in successfully evolved individuals? After a brief
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Figure 8.1: White(A), Pink(B) and Brownian Motion(C) noises and their spectral densities,
S(f).

analysis, it is easy to realize that for most evolutionary computation representations, which
rely on an order-based encoding of information, this question has a trivial answer: the
behavior exhibited by the evolved symbolic sequences is the one dictated by the chosen fitness
function. For proteome-based location independent representations such as the PGA, this
question becomes more interesting and less obvious. In proteome-based location independent
representations, the encoding is based on which symbols are present on a genome and not
on the order in which they are present [WG02]. Therefore, the order of genomic symbols
is free to evolve along with the candidate solution they encode. We use spectral density
measurement techniques to analyze the best individuals obtained by a PGA when applied
to three problem domains: number matching, symbolic regression, and dynamical system
control.

8.1.1 Symbolic Sequence Analysis

Autocorrelation and spectral density functions are widely used to analyze how fluctuations
of a quantity, X(t), are correlated between times t and t + τ . Figure 8.1 shows examples
of typical noises and their characteristic spectral densities S(f). Voss [Vos93] has shown
that this time correlation analysis can be successfully adapted to the analysis of symbolic
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Figure 8.2: Log-log spectral density plots of the best of the last generation individuals. From
the bottom up, symbols A and B for PGA on number matching, on symbolic regression and
on dynamical system control problems. The graphics have been offset for clarity.

sequences such DNA. We use standard spectral density measurement techniques as adapted
by Voss to analyze GA genomes using proportional representation. We analyze the best
genomes from the last generation of a PGA run. These individuals are likely to be optimal
or very close to optimal. Figure 8.2 shows the spectral density of the first two symbols of the
alphabet (A and B) for three problems: number matching, symbolic regression, and control
of dynamical systems. In all cases, we find that the emergent ordering of genomic symbols,
according to our symbolic sequence analysis, resembles white noise. These results contrast
with the original analysis of DNA sequences from GenBank data bank. In that study, 1/f
noise and long-range fractal correlations are found over a broad range of DNA classifications
such primate, invertebrate, plant, etc.

Regarding this contrast between the PGA and DNA spectral analysis, evolutionary com-
putation processes are inspired by nature but do not pretend to model the complexities
involved in biological evolution. Therefore, PGA is not a model to study DNA. Having said
so, we think that the observed differences are due to the fact that DNA strings are a mixture
of location dependent and location independent encodings, while the PGA is purely location
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independent. Since the PGA is purely location independent, we expect that the emerging
order is purely due to the dynamics of the algorithm, in our case white noise. In the DNA
case, it seems that the pink noise arises due to long range dependencies in the encoded
information.

8.2 Genomic Self-Similarity Analysis

The objective of this empirical study is to determine whether or not genomic self-similarity
with respect to fitness emerges in the PGA proteome-based location independent represen-
tation. Based on previous PGA studies that suggest that PGA genome segments are coarse
grained versions of an entire PGA genome, we expect the following behavior. Large genome
segments will approximate the fitness of the entire genome very closely. The smaller the
genome segments, the less they will resemble the fitness of the entire genome. There will
be a cut-off point where a segment is too small to represent the required information and
self-similarity is lost. As a result, we expect a gradual decrease in fitness as the segments get
smaller until a cut-off point is reached at which point fitness will show a significant drop, as
shown in Figure 8.3(C). As a baseline comparison, we use a regular GA in which genomic
order is dictated by selection pressure and consequently not free evolve or self-organize. Ex-
ceeding our expectations, and as we will see shortly in the results section, PGA genomes
resemble ideal self-similarity until the cut off point is reached.

The freedom of genomic elements to self-organize comes from the choice of representation.
In the PGA proteome-based location independent representation the order on which the
symbols are located on the genome, by definition, has no effect on the fitness of the individual.
As a result, the genome is free to organize in response to other factors such the dynamics
of the algorithms, operators, or building block processing. Because the PGA representation
is based on a multiset, we can guarantee that no fitness function definition can distinguish
between different orderings of the same symbols.

On the other hand, in a traditional representation where information is encoded on the
order of the genomic symbols, there is no such freedom for genomic self-organization. On this
case, fitness can potentially differentiate among various orderings and therefore the orderings
can be subject to selective pressure. Unless the fitness function is specifically handcrafted
to allow assure all possible orderings to have the same fitness value, a very unlikely scenario,
on these cases the ordering of symbols will be determined by fitness. In our experiments, we
do not handcraft such fitness for the traditional GA binary representation; hence, we do not
expect self-similarity to emerge on GA genomes.
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8.2.1 Self-Similarity Metric for Genomes

We use fitness as the metric for genomic self-similarity. A genome is self-similar if its fitness is
approximately equal to the average fitness obtained by evaluating all of its genomic segments
of a given segment length. More formally, let us introduce the following notation. A genome
g<1,L> = g1g2g3...gL, or simply g, is a string of length L over the genome alphabet Σ. A
segment s<i,j> = sisi+1si+2...sj of g<1,L> is defined as the substring gigi+1gi+2...gj, where
1 ≤ i ≤ j ≤ L. A fitness function F(g<1,L>) maps strings into real numbers and is defined
for any genome or segment. Using the notation above, we define the average fitness of all
segments of size r over genome g<1,L> as follows:

f̂r(g<1,L>) =

L−r+1∑
i=1

F(s<i,i+r−1>)

(L− r + 1)
(8.1)

Note that for a segment equal to the entire genome (r = L), the expression above reduces
simply to a fitness evaluation:

f̂r(g<1,L>) = F(s<1,L>) = F(g<1,L>)

Finally, we say that a genome is self-similar if the following expression is true:

∀r

[
f̂r(g<1,L>) u F(g<1,L>)

]
(8.2)

where r is the size of the genome segments used to analyze self-similarity.

The above equation implies the following. For an ideal case of genomic self-similarity,
Equation 8.2 will hold indefinitely for any segment size r. In this case, genomic segments
of any size will have the same fitness as the entire genome, as shown in Figure 8.3(A). This
case is analogous to perfect fractal behavior. On the other hand, if there is no self-similarity,
Equation 8.2 will not hold even for large segments. In this case, the fitness of the segments
will not resemble the fitness of the entire genome. We thus expect random segments with
average fitness equal to the median fitness of the problem as demonstrated in Figure 8.3(B).

8.2.2 Fitness Evaluation

For all experiments, we set the algorithms to solve a very simple problem: number matching.
Number matching is a simple hamming distance type of problem for real numbers. The goal
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Figure 8.3: Predicted genomic self-similarity in populations that have converged to the
optimal fitness of 1. (A) Ideal self-similar case: all genomic segments have fitness of 1
regardless of their size. (B) No self-similarity case: segments have random fitness with
average equal to the fitness median. (C) PGA expected self-similarity: segments gradually
reduce in fitness as they get smaller. Experimental results resemble the ideal case (see
Figure 8.4).
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genome segments(f̂r(g<1,L>)) of sizes(r) L(entire genome), L/2(half genome), L/4, ... , and
L/512 on a simple number matching problem averaged over 20 runs with 95% confidence
intervals. (Top: self-similarity) PGA segment fitness remains approximately equal to the en-
tire genome fitness for segment sizes of L/2, L/4, ... until L/128. (Middle: no self-similarity)
No GA segment has average fitness close to the entire genome fitness for any segment size.
Baseline note: for clarity, only GA average is shown; GA best is not shown but has similar
behavior.
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is to match, as closely as possible, a vector of target numbers. We use vectors of size two.
For convenience of exposition, let us define the following function:

δ(x, y) =

{
x/y if x < y
y/x otherwise

∀x, y ∈ <+.

Fitness is determined by the average difference, as measured by δ, between the values encoded
in the individual’s genome (or segment) and the target values:

F(g<1,L>) =
δ(v1

target, v
1
encoded) + δ(v2

target, v
2
encoded)

2

Where, Vtarget = {v1
target, v

2
target} is the vector of target values, and Vencoded = {v1

encoded, v
2
encoded}

is the vector of values encoded in g. For the PGA, the encoded values are given by:

Vencoded(g) =

[ |g|a
|g|a + |g|b ,

|g|c
|g|c + |g|d

]

where the genomic alphabet is ΣPGA = {a, b, c, d}, and |X|y returns the number of times
a symbol y appears in the multiset associated with string X. Note that this definition is
also valid for genomic segments. Note also that only the associated multisets are used to
calculate the values. The first value is encoded simply as a proportion of the concentrations
between symbols a and b, and the second value, between symbols c and d. The proportions
are numbers between zero and one, but they can be easily scaled to represent any parameter
range of values.

For the GA, the values encoded in the genome are interpreted in the usual way. The
genomic alphabet is binary: ΣGA = {0, 1}. The first half of the genome represents our first
encoded value and the second half, our second encoded value. Note that this definition is
also valid for genome segments.

8.2.3 Settings

For our experiments, we use a standard GA a PGA. The GA uses a binary alphabet; the
PGA uses a multicharacter alphabet. Mutation, in the GA, is bit-flip mutation. The PGA
mutation, randomly changes one alphabet symbol into another. The following parameter
settings are common for all experiments: the genome length is L=1000 and segment sizes are
L/2, L/4, L/8, L/16, L/32, L/64, L/128, L/256, and L/512, the crossover type is two-point,
the crossover rate is 0.8, the mutation rate is 0.005, the selection method is tournament of
size 4, the population size is 250, and the number of generations is 500. We perform 20 trials
for all experiments using new randomly generated targets for each run, and report average
values with their 95% confidence intervals.
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8.2.4 Results

Figure 8.4 shows plots of the average measured fitness for decreasing segment length. These
results reveal genomic self-similarity with respect to fitness for the PGA and no self-similarity
for the baseline case. The self-similarity is almost ideal (see Figure 8.3 (A)) for segments
as small as L/128 = 1000/128 = 7.81 symbols. After this critical point, self-similarity is
lost and fitness of the segments decreases significantly. Figure 8.5 shows the raw fitness of
segments of size L/2 for the two encoded values over the 500 generations. In Figure 8.5 (A),
the variance for the self-similar case is very small. This result indicates that all segments,
not just their averages, must have fitness similar to the entire genome. In Figure 8.5 (B),
the variance for the non-self-similar case is very high, indicating that the segments have a
wide range of fitness values and are not similar to the entire genome.

8.3 Discussion

Empirical observations from section 7.2.3 and from this chapter indicate that, during the
course of the evolutionary process, PGA genomes tend to self-organize into a self-similar state
with respect to fitness. In this state, alphabet symbols are evenly distributed throughout the
genome. The question, then, is: why does this particular organization emerge when there is
no fitness pressure for any particular ordering?

Self-similarity with respect to fitness is possible because PGA looks for proportions. If
the desired proportion of symbols α and β is 2 : 1, and if the symbols are evenly distributed
throughout the genome, the genomic segments will have roughly the correct proportion. This
self-similarity reduces building block disrruption. Building block disruption occurs when a
crossover operation destroys useful schemata. In the PGA case, a genome self-organizes into
self-similar building blocks. These building blocks are not disrupted by typical crossover
operations because a sub-segment is itself a representative of the entire building block or
schema. As a result, crossover disruption is minimized, if not eliminated, on the PGA
genomes once this self-similarity has emerged.

Self-similarity reinforce positive correlations between form and quality of candidate so-
lutions. Let us analyze the effects of self-similar genomes on one-point crossover and single-
symbol mutation. Assume that P1 and P2 are two individuals with perfect, self-similar
genomes of length L over the alphabet A = {a, b}. P1 and P2 undergo one-point crossover
at location l and, as a result, the individuals P3 and P4 are produced. The concentrations
of symbols a and b on individuals P1 and P2 are given by:

ap1 =
|P1|a

L
bp1 =

|P1|b
L
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Figure 8.5: Average encoded values 1 and 2 of genomic segments of size L/2 (half-genome)
over 500 generations. The plots show averages and standard deviations over 20 runs. (A)
PGA encoded values 1 and 2 have tight standard deviations that indicate that encoded
values of PGA genomic segments of size L/2 converge. From Figure 8.4 we observe that
their fitness converges to a near optimal solution, similar to the fitness of the entire genome
L. (B) GA encoded values 1 and 2 have wide standard deviations that indicate that GA
genomic segments of size L/2 do not converge. Furthermore, the encoded values of these
segments appear to be randomly distributed. From Figure 8.4 we observe that their average
normalized fitness is not similar to the entire genome, but near to the median 0.5 instead.
We observe similar behavior for segments of size L/4 to L/128.
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ap2 =
|P2|a

L
bp2 =

|P2|b
L

It is easy to see that after crossover, the concentrations of the resulting offspring P3 and P4

are:

ap3 =

|P1|a
L
× l +

|P2|a
L
× (L− l)

L

ap4 =

|P1|a
L
× (L− l) +

|P2|a
L
× l

L

bp3 =

|P1|b
L
× l +

|P2|b
L
× (L− l)

L

bp4 =

|P1|b
L
× (L− l) +

|P2|b
L
× l

L

Hence, the symbol concentration of the offspring produced as a result of one-point crossover
between parents with self-similar genomes is the weighted average of the symbol concentra-
tion of the parents. In terms of mutation, let us assume that P1 undergoes single-symbol
mutation in the following way: a single symbol is changed from a to b. Before mutation, the
concentrations of symbols in P1 are given above. After mutation, we have:

a
′
p1 =

|P1|a − 1

L
b
′
p1 =

|P1|b + 1

L

The change in concentrations is given by:

∆Map1 = | |P1|a
L

− |P1|a − 1

L
| = 1

L

∆Mbp1 = | |P1|b
L

− |P1|b + 1

L
| = 1

L

This concentration change equals the minimum possible change allowed by the encoding:
1/L.

Clearly, the behavior of crossover and mutation applied to self-similar genomes produces
smooth moves in the representation space. Crossover acts by averaging parent concentrations
and mutation acts by changing an individual by the minimal difference. This smoothness
of the proteome-based location independent representation will certainly not hinder, and
will probably accentuate the key property required for stochastic search: positive correlation
between the form and quality of solutions.
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8.4 Summary

This chapter study the emergent organization of proteome-based location independent genomes
using two methods: standar expectral density analysis of equal-symbol correlations and em-
pirical fitness comparison of genomic segments to determine self-similarity with respect to
ftiness. The equal-symbol correlatio analysis shows that the order of genomic symbols re-
sembles white noise. This confirm results on section 7.2.3 that show that in PGA genomes,
symbols are evenly distributed throughout the entire genome. The empirical analysis offers
evidence of the emergence of genomic self-similarity with respect to fitness in PGA genomes.
When genomic order is free to evolve, the genome self-organizes in response to the dynamics
of the evolutionary system. In the PGA case, it self-organizes into a fractal-like structure in
which genomic segments have approximately the same fitness as the entire genome.

83



CHAPTER 9

CASE STUDY: ADVANCE LIFE SUPPORT

SYSTEM

As technology advances in the space industry, the opportunity and need for long term
extraterrestrial missions will increase. Such missions include both missions in space and
extraterrestrial planetary habitats. In all cases, a necessary element for the success and
productivity of a mission is an effective Advanced Life Support System (ALSS). A closed
habitat such as a planetary or space habitat is composed of multiple components, e.g. crew,
air, water, plants, climate, stores, and waste, all of which interact in a complex manner. An
ALSS controls the necessary processes that regenerate basic life support products such as air,
water, and food within a habitat. As a result, it minimizes the need to store large amounts
of consumable products and minimizes the need for frequent resupply of such products.

Energy is required to produce food, regenerate air, purify water, and process waste. A
closed habitat may be limited to a pre-defined amount of stored energy or may be exposed to
a reliable, fixed energy source such as the sun or regular air currents. The task of an ALSS
is to distribute available energy resources among the required tasks as efficiently as possible
to maximize the productivity and lifetime of a habitat. The tight coupling of the system
components and inherent unpredictability of some of them, e.g. the crew and climate, make
this a complex task. Nevertheless, many of the decisions and tasks of an ALSS are routine
and the development of automated or semiautomated systems can significantly reduce human
effort on tedious monitoring tasks.

An ALSS is an example of a class of systems called coupled dynamical systems. Such
systems consist of deterministic subsystems whose behaviors are easy to predict in isolation;
but the behavior of the complete system is difficult to predict and, thus, difficult to control.
The majority of work on ALSS control to date has focused on modeling and control of
individual subsystems within a life support system, e.g. the water recovery system or the air
revitalization system. Control algorithms are typically reactive to changing conditions but
deliberative and tailored to a specific module or set of modules [BFG97, CPF00, STB02].
While deliberative control systems may suffice under static conditions, some element of
learning or adaptability is likely to be necessary in real world scenarios. Kortenkamp et al.
[KBS01] present the first study which successfully uses machine learning (ML) techniques to
learn how to control an ALSS as a whole.
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Table 9.1: Vector of control parameters, ~c t, of ALSS simulator.
Parameter Description Values Type
ct
energy.to.air Energy alloc. to air processing 0 ≤ x ≤ 5 Real

ct
energy.to.water Energy alloc. to water processing 0 ≤ x ≤ 5 Real

ct
energy.to.food Energy alloc. to food production 0 ≤ x ≤ 5 Real

ct
water.to.crew Clean water allocated to crew 0 ≤ x ≤ 5 Real

ct
water.to.crops Clean water allocated to crops 0 ≤ x ≤ 5 Real

ct
activity.level Activity level of crew 0, 1, 2, 3 Integer

ct
store.water Use resources from water store 0, 1 Integer

ct
store.air Use resources from air store 0, 1 Integer

ct
store.food Use resources from food store 0, 1 Integer

In this paper, we extend previous work [KBS01] by performing a detailed comparison
of genetic algorithm (GA) and stochastic hill-climbing (SH) approaches to ALSS control.
Evaluation of candidate solutions is performed on a newer and more complete ALSS model
than previously available. As a result, successful results lend even stronger support to the
viability of ML techniques in the development of autonomous ALSS controls. For both
algorithms, problem representation determines the shape of the landscape which determines
the solutions that are reachable from any particular solution. We examine the performance
of these algorithms using two significantly different types of problem representations.

9.1 Background

9.1.1 Advanced Life Support System Simulator

We have implemented an ALSS simulator that models the basic processes occurring in
the Bioregenerative Planetary Life Support System Test Complex (BIO-Plex) developed
by NASA Johnson Space Center [BCF99, KBS01, Tri99]. This ALSS simulator is used to
evaluate the candidate control strategies generated by our algorithm. The ALSS simulator is
a simplified model of the actual BIO-Plex simulator because of time and computational con-
straints; however, our learning algorithm should be easily linkable to the BIO-Plex simulator
if desired.

In each time step, the ALSS accepts as input the vector of control parameters ~c t listed in
Table 9.1. A continuous value from zero to five indicates energy allocation to water, air, and
food processing, as well as water allocation to crew and crops. Larger values indicate more
energy and water. There are four discrete activity levels for the crew: sleep (0), low activity
(1), moderate activity (2) and high activity (3). A binary value each indicates whether or
not water, air, and food stores will be used. At the end of a simulator run, the ALSS outputs
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Figure 9.1: Basic transitions in the ALSS simulator.

measures of mission duration in simulation time steps or ticks (approximately one hour) and
mission productivity in units of “science” for that particular run. A simulator run ends when
resources are exhausted and the environment becomes unable to support human life. The
diagrams in Figure 9.1 describe the basic processes and transformations that take place in
the ALSS simulator in each time step.

1. The crew process consumes clean air, clean water, and food from the environment and
produces dirty air, dirty water and science. The consumption and production rates
are determined by the activity level input parameter. The higher the activity level,
the greater the consumption of resources and production of resulting products. An
internal simulation parameter, crew status, represents the health of the crew. A lack
of resources for multiple consecutive time steps results in crew extinction and the end
of the simulation.

2. The crops process consumes clean air, clean water, dirty air, and energy. It produces
dirty water and food. Production of food depends on the crop status and on the
availability of the consumed products. The crop status represents the current crop
health, and decreases if there is insufficient air, water, or energy. Lack of consumables
over multiple consecutive time steps results in crop expiration and the end of food
production.

3. The air recovery process consumes energy and dirty air and produces clean air. The
amount of clear air produced depends on the available energy. Lack of energy for
three consecutive time steps shuts down this process (shut down period). If energy is
restored, the process requires two consecutive time steps with adequate energy supply,
(warm up period) to restart the production of clean air.

4. The water recovery process consumes energy and dirty water; and produces clean water.
This process is analogous to the air recovery system, but with warm up and shut down
periods of ten and five simulation time steps, respectively.
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A detailed mathematical description of the simulator is given in Appendix A.

9.1.2 Related Work

Automated and semi-automated control of ALSS attempts to relieve the workload of human
operators and crew members, moving them from a “vigilant monitoring” role to a “super-
visory monitoring” role and allowing them more time to perform the more complex tasks
of a mission [STB02]. Although live subject experiments have been and continue to be
performed, mathematical modeling and simulation studies are also prevalent due to their
significantly lower cost and high controllability. Such simulations use mathematical models
to approximate and simulate the interactions that are expected to occur for any given set of
input conditions [Fin99, FT01, GT99, KB03a]. Studies of autonomous or semi-autonomous
control of various individual subsystems of an ALSS include a three-tier hierarchical control
of water recovery and air regeneration systems [STB02], a market auction based approach to
managing power allocation and surges for a partially modeled ALSS [CPF00], and various
approaches for control of environmental management systems [Fin99, FT01, STB02].

Kortenkamp et al. [KBS01] are the first to evaluate ML methods for learning effective
ALSS energy allocations using an early version of the BIO-Plex simulation. They find both
the GA and reinforcement learning to be viable choices for maximizing either or both the
mission duration and productivity of a single simulator run. Two different GA implementa-
tions are tested. In the first GA method, each GA individual specifies a single set of control
parameters. The fitness of an individual is based on the duration or productivity of a run
which uses that individual’s parameter setting in every time step. A fitness function that
optimizes for mission duration produced an optimal run of 31 ticks with 148 units of sci-
ence. A fitness function that optimizes for productivity generated a maximum of 184 units
of science with mission length of 26 ticks. By comparison, reinforcement learning performs
slightly better than the GA in terms of mission duration and about twice as good in terms
of productivity. The second GA approach allows each GA individual to specify multiple,
n, sets of parameter values. These n sets of values are used in n consecutive time steps in
a simulation run. The fitness of an individual is based on the duration and productivity
of a simulation over the n time steps it takes to use all parameter sets specified by that
individual. The next individual to be evaluated executes its parameter values in the next n
time steps of the same simulation. This multi-step GA produces a significant improvement
in performance reaching a mission duration of 702 ticks (when optimizing for ticks) or pro-
ductivity of over 1800 units of science (when optimizing for science). Increasing the number
of sets of parameters, n, and the target fitness values over multiple runs appears to improve
the quality of solutions generated.

Within the area of resource allocation, GAs have been successfully applied to number
of different types of problems. For example, in wireless communications, GAs are able to
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Table 9.2: Constant parameter settings for all GA runs.
Population size 100
Generations 500
Selection method tournament
Crossover type two-point (fixed length), homologous (variable length)
Crossover rate 1.0
Mutation rate 0.005

learn effective and adaptive frequency allocation strategies [SHN99, SHN00, Wil00]. Military
applications have used GAs to allocate resources such as aircraft [ABB98], weapons [OS94],
and sorties [PZS01]. Lau and Tsang [LT98] apply a hybrid algorithm combining a GA
with Guided Local Search to solve the Generalized Assignment Problem. Callaghan et
al. [CNL99] use a GA to optimize land allocation. Baglioni et al. [BSd00] describe an
evolutionary approach to financial asset allocation. Cousins et al. [CLR98] describe a hybrid
GA method for memory allocation in high performance computing systems. Papavassiliou
et al. [PPT01, PPT02] examine the integration of agents and GAs for network management.
The problem of optimizing resource allocation is closely related to scheduling and routing
problems that have been widely studied in the GA field [Bru97, Mic98, Nis97].

9.2 Algorithm Descriptions

9.2.1 Genetic Algorithm

A genetic algorithm [Hol75b, Gol89] is a learning algorithm based on principles from natural
selection and genetic reproduction as described in section 2.1.1. Table 9.2 gives the GA
parameter settings used in this work. Values were experimentally selected to provide good
performance.

9.2.2 Stochastic Hill Climbing

Hill-climbing [Ack87, Dav91] is a simple optimization algorithm that has proven to be a
competitive alternative to GAs. If we visualize an optimization problem as a landscape on
which each point corresponds to a solution and its height corresponds to the fitness of the
solution, a hill-climbing algorithm searches for peaks by repeatedly moving to adjacent points
of higher fitness. Stochastic hill-climbing (SH) is a probabilistic variant of hill-climbing in
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which the search of adjacent points is stochastic and not deterministic. In the GA community,
SH is a widely accepted baseline test of GA effectiveness for given problems [JW95, MHF94].
The SH algorithms used here adopt the problem representation, the fitness function and the
mutation operator of their corresponding GA variant, but they all share the following search
procedure:

1. Choose one individual at random. Call this individual the best-individual.

2. If termination condition satisfied, stop and return best-individual.

3. Mutate best-individual. If the mutation produces an individual with higher fitness,
then set best-individual to mutated individual. Go to step 2.

The termination condition is set to 50,000 fitness evaluations—equal to the number of eval-
uations in each GA run. Mutation probability was experimentally optimized and set to
0.05.

9.3 Fitness Definitions

9.3.1 The Optimization Problem

The ALSS simulation, the optimization problem, and the fitness functions are formally de-
fined in Appendix A. Informally, an ALSS simulation (Definition 1)1 is a coupled dynamical
system with a set of internal simulation states (Definition 3), a control strategy (Definition 5)
and a transition function (Definitions 6 to 10). The next step of a simulation (Definition 11)
is calculated deterministically using the transition equations that compute the next simu-
lation state based on the current state and the current control variables provided by the
control strategy. The ML problem is to find a controller or, equivalently, to find a set of
control variables to be used in each simulation step that optimizes one or more outcomes of
a simulation. A simulation ends when its environment is no longer able to support human
life (Definition 13). In this paper, we study three different optimization problems of interest:

1. Finding a control strategy that maximizes mission productivity (Definition 15).

2. Finding a control strategy that maximizes mission duration (Definition 16).

3. Finding a control strategy that optimizes both mission productivity and duration (Def-
inition 17).

1All definitions are in Appendix A
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9.3.2 The Control Strategies

The control strategy (Definition 5) throughout this paper uses n vectors of control param-
eters circularly within a simulation. Therefore, the optimization problem for the various
algorithms we test—GA and SH with both binary and proportional representations—is re-
stricted to learning the appropriate n vectors of control parameters that, when circulated
in a simulation, produces a maximized outcome of mission productivity, duration, or both.
We call this control strategy Γn. We perform experiments with n = 1, 3, 5, 7, and 9 vec-
tors of parameters and refer to these instantiations of the control strategy as Γ1, Γ3, Γ5,
Γ7, Γ9, respectively. Each individual or a candidate solution is a set of n vectors of control
parameters.

9.3.3 The Fitness Measures

The fitness of an individual is determined by running an ALSS simulation using an indi-
vidual’s n vectors and control strategy Γn. We use the following fitness measures for our
experiments:

1. The total amount of “science” produced by the crew when the simulation ends; when
optimizing mission productivity (Definition 18).

2. The number of simulation time steps at which the simulation ends; when optimizing
mission duration (Definition 19).

3. A weighted addition of the previous two measures; when optimizing both (Defini-
tion 20).

9.4 Problem Representation

How a problem is represented in an ML algorithm determines what can be expressed and
how the solution space is connected which in turn determines the concepts that can or
cannot be learned. How information is represented in a learning algorithm can affect an
algorithm’s expressivity, efficiency, and readability [Sam94]. We compare the performance
of a GA and SH on two drastically different problem representations: binary representation
and proportional representation.
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Parameter Expressed Value

Energy to water 2/15× 5 = 0.67
Energy to air 5/15× 5 = 1.67
Energy to food 8/15× 5 = 2.67
Water to crew 9/15× 5 = 3
Water to crops 7/15× 5 = 2.3
Crew activity level 3
Use water store 1 (Yes)
Use air store 0 (No)
Use food store 1 (Yes)

Figure 9.2: A binary encoded individual and its corresponding encoded values.

9.4.1 Binary Representation

Binary representation is commonly used in algorithms that use linear problem representations
such as GAs and SH. A typical binary representation consists of a field of bits for each encoded
parameter value. For our problem, each vector of control parameters is a 25 bit string. We
use four bits to represent each of the five real values shown in Table 9.1. Four bits provide a
resolution of sixteen possible values which are scaled to a real value between zero and five.
We use two bits to represent the “activity level”. The activity level ranges from zero to three
and is indicated by the binary value of the two bits. We use a single bit for each binary
value representing whether or not to use resources from the stores. With this representation,
each individual is a 25×n bit string formed from the concatenation of n 25 bit strings, each
representing one vector of parameters. Figure 9.2 shows an example individual for n = 1
and values that it encodes. The GA uses two-point crossover and bit flip mutation. The SH
uses bit flip mutation.

The strengths of binary representations are that they are very space efficient and that
they are logical and easy for humans to interpret. Their weaknesses include brittleness
(missing, extra, or misplaced bits can severely change encoded values) and the fact that they
are subject to positional biases found in order-based encodings [ECS89].
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Table 9.3: Proportional representation character assignments for ALSS problem.
Parameter value V p char(V ) n char(V ) Vmin Vmax

Energy to water A a 0 5
Energy to air B b 0 5
Energy to food C c 0 5
Water to crew D d 0 5
Water to crops E e 0 5
Crew activity level F f 1 3
Use water store G g 0 1
Use air store H h 0 1
Use food store I i 0 1

9.4.2 Proportional Representation

The proportional representation attempts to address the weaknesses of order-based encodings
by eliminating the notion of order altogether. This representation was initially developed for
a GA [WG02], but can also work with other algorithms such as SH. Encoded information
depends solely on what does and does not exist on an individual and not on the order in
which it is present. As a result, the order of the encoding is free to evolve in response to
factors other than the expressed solution, for example, in response to the identification and
formation of building blocks.

The proportional representation uses a linear genome with a multi-character alphabet.
One or more unique characters are assigned to each parameter or component of a solution.
The value of a parameter is determined from the relative proportions of the assigned char-
acters of that parameter. Thus, characters that exist are “expressed” and, consequently,
interact with other expressed characters. Characters that do not exist are “not expressed”
and do not participate in the interactions of the expressed characters.

For example, in the ALSS problem, we are searching for n vectors ~V of a = 9 parameter
values, Vi, i = 0, ..., a−1. The range of these values is given in Table 9.1 and will be denoted
by Vi,min and Vi,max. We assign a “positive” character, p char, and a “negative” character,
n char, to each parameter as shown in Table 9.3.

The number of positive and negative characters on an individual are used to calculate
the proportion of positive characters, pct, as follows:

pct(Vi) =
p char(Vi)

p char(Vi) + n char(Vi)

where i = 0, ..., a−1 and 0.0 ≤ pct(Vi) ≤ 1.0. The value of each parameter is then calculated
by the equation

PPGA(Vi) = Vi,min + pct(Vi)× (Vi,max − Vi,min).
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Figure 9.3: An example proportional representation individual of length 40 with a single
vector (n = 1).

Table 9.4: Allocation of resources as specified by example individuals from Figures 9.3
and 9.4.

Value V p char(V ) n char(V ) pct(V ) PPGA(V ) Expressed value
Energy to water 6 A’s 1 a’s 6/(6 + 1) 4.29 4.29
Energy to air 2 B’s 3 b’s 2/(2 + 3) 2.0 2.0
Energy to food 2 C’s 2 c’s 2/(2 + 2) 2.5 2.5
Water to crew 1 D’s 0 d’s 1/(1 + 0) 5.0 5.0
Water to crops 1 E’s 1 e’s 1/(1 + 1) 2.5 2.5
Crew activity level 3 F’s 4 f’s 3/(3 + 4) 1.86 2
Use water store 5 G’s 2 g’s 5/(5 + 2) 0.71 1
Use air store 0 H’s 4 h’s 0/(0 + 4) 0.0 0
Use food store 2 I’s 1 i’s 2/(2 + 1) 0.67 1

A typical single-vector individual (n = 1) of length 40 such as the one shown in Figure 9.3
encodes the values shown in Table 9.4. As the expressed values are completely independent
of the arrangement of characters, the individual in Figure 9.4 also encodes the values shown
in Table 9.4.

A fixed length GA uses two-point crossover. A variable length GA uses homologous
crossover [BDG98] which randomly selects a crossover point on the first parent, then finds
the region of highest homology (similarity) on the second parent. Crossover occurs within
the region of homology. Mutation for both a GA and SH randomly switches one character
to another character in the alphabet. All characters are equally likely.

AAAAAAaBBbbbCCccDEeFFFffffGGGGGgghhhhIIi

Figure 9.4: Another example proportional representation individual of length 40 with a single
vector (n = 1). Encodes equivalent solution as individual from Figure 9.3.
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9.4.3 How to Fairly Compare Binary and Proportional Represen-
tations

Although the proportional representation eliminates positional biases, it is clearly a less
compact encoding than binary representation. Binary individuals are strings over a binary
alphabet while proportional individuals are strings over a higher-arity alphabet. As a result,
binary and proportional individuals of identical length will likely encode solutions spaces
of different sizes. In order to fairly compare the two representations we need to find a
relationship among their individual lengths and alphabet sizes to ensure that both algorithms
target solution spaces of comparable complexity2.

A binary individual of length lbin over an alphabet with cardinality nbin encodes (nbin)lbin

different binary strings which represent (nbin)lbin different solutions. The size of the search
space and the solution space are equal for binary representation. A proportional individual of
length lpro over an alphabet with cardinality npro encodes (npro)

lpro different multi-character
strings. These strings are the search space of this proportional representation. According
with section 6.1.4, they map to a solution space of

(
npro+lpro−1

lpro

)
different solutions. Thus,

(nbin)lbin =

(
npro + lpro − 1

lpro

)
(9.1)

must hold for a binary and proportional representation to encode solution spaces of the
same size. Consequently, a proportional encoding length will typically be longer than an
equivalent binary length.

A binary encoded individual requires a total length of 25 bits to represent a single vector
of values and 25 × n bits to represent n vectors. We can use Equation 9.1 to calculate the
corresponding proportional representation lengths for each value in a vector, then sum over
all values to obtain the total equivalent proportional representation length. For example,
nbin = 2 and lbin = 4 for the binary representation of the first parameter—energy allocated
to water processing. The proportional representation uses two characters to represent any
single parameter, thus npro = 2. Using Equation 9.1, we calculate lpro = 15 for the first
parameter. We can compute the remaining equivalent parameter lengths for the proportional
representation in the same way, to obtain a total equivalent proportional representation
length of lpro(1) = 15+15+15+15+15+2+1+1+1 = 80 for a single vector. The required
proportional representation length for n vectors is lpro(n) = lpro(1)× n = 80× n.

We compare binary representation to three proportional representations of differing lengths,
Len, and consequently, differing resolutions:

1. PSame: Fixed length proportional representation in which the length of an individual
is the same as the length of a binary representation individual, Len = lbin. This length
is 25 for a single vector of parameters and 25×n for n vectors of parameters. According

2We define the search space to be the space of all encodings and the solution space to be the space of all
solutions.
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to Equation 9.1, PSame is severely penalized in terms of available resolution due to its
restricted genome length.

2. PHalf: Proportional representation with a fixed length of one half the equivalent
length, Len = lpro/2. This length is 40 for a single vector case and 40×n for n vectors.
PHalf is still penalized in terms of available resolution; however, less so than PSame.

3. PMax: Proportional representation with the equivalent length, Len = lpro. This length
is 80 for the single vector case and of 80× n for the n vectors case. To save space, we
allow the GA to evolve variable lengthed individuals with a maximum length of Len.
No parsimony pressure is applied. The SH uses fixed length individuals of length, Len.

The proportional representation typically requires two characters for each parameter,
thus, the total number of characters required to represent n vectors of nine parameters should
be 2×9×n. As the precision of similar parameters is likely to be comparable, it is reasonable
to use the same set of negative characters for all corresponding vector components. The
resulting PGA requires only 9× (n+1) characters to represent n vectors of nine parameters.
For example, consider the case of n = 3 vectors. The first parameter of each vector represents
the value of energy to water. Let all three values share the same negative character: a; but
have unique positive characters: A for the value in the first vector, J for the second and S
for the third. Similarly, the second parameter (representing the value of energy to air) of all
three vectors share the same negative character: b; but have unique positive characters: B,
K and T, respectively. We use this sharing strategy for all the experiments with proportional
representation.

9.5 Comparative Experimental Analysis

We compare the performance of a GA and SH in finding control parameter values for the three
optimization problems described in section 9.3.1 using the five control strategies described in
section 9.3.2 for the ALSS simulation. In each set of experiments, we test eight algorithms:
GA and SH each using four different representations, Binary, PSame, PHalf, and PMax,
as described in section 9.4.3. In total, we perform 120 experiments. Each experiment is
run 40 times and the results averaged over all runs. In each run, learning stops at 50,000
fitness evaluations. Each fitness evaluation consists of one execution of the ALSS simulator
using the control parameters to be evaluated. When the ALSS simulation terminates, an
appropriate fitness value is returned as described in section 9.3.3.

Figure 9.5 summarizes the results from these 120 experiments. For each experiment, we
plot the fitness of the best solution found averaged over 40 runs along with 95% confidence
intervals. The results are organized into three plots by optimization problem: (A) optimiz-
ing mission productivity, (B) optimizing mission duration, and (C) optimization of mission
productivity and duration. The y-axes indicate the fitness of the solutions found: in units
of science for (A), in simulation time steps or ticks for (B), and as a weighted combination
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Figure 9.5: GA and SH with binary, proportional-same, proportional-half, and propor-
tional-max representations using control strategies Γ1, Γ3, Γ5, Γ7, and Γ9 to optimize ALSS
(A) mission productivity, (B) mission duration, and (C) both. Fitness of best solution found
averaged over 40 runs and 95% confidence intervals.
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of both for (C). The x-axis indicates the algorithms used. On this axis, from left to right,
we show a group of eight algorithms working with strategy Γ1(n = 1), then a group of eight
algorithms working with strategy Γ3(n = 3), and so on until Γ9(n = 9). Within each group,
the eight algorithms are, from left to right: Binary-GA, PSame-GA, PHalf-GA, PMax-GA,
Binary-SH, PSame-SH, PHalf-SH, and PMax-SH.

Figure 9.5 (A) plots the results for optimizing mission productivity. Overall, performance
increases as the number of control vectors n used by the control strategy Γn increases. For
n = 1, performance ranges from an average of 20,535 units of science generated by PSame-GA
to statistically undistinguishable averages of 29,822 and 29,748 units generated by PMax-SH
and PMax-GA. For n = 3, performance fluctuates between 30,731 and 34,931 units of science
generated by Binary-GA and PHalf-GA, respectively. PMax-GA performance of 34,894 is
statistically undistinguishable from that of PHalf-GA. For n = 5, performance fluctuates
between 31,076 and 38,251 units of science generated by PMax-SH and PHalf-GA. For the
higher values of n, n = 7 and n = 9, performance ranges from 29,205 to 38,118 and from
28,267 to 38,016 with the worst and best performances in both cases generated by PMax-SH
and PSame-GA, respectively. The best performance for this set of experiments (A) is 38,251
units of science, achieved by PHalf-GA with n = 5. PSame-GA with n = 7 and PSame-GA
with n = 9 achieve results that are statistically equivalent to the best. The best performance
obtained by a SH algorithm is of 37,173 by PSame-SH with n = 7. However close, it is,
nevertheless, statistically worse than the best GA performance. Overall, for all the values
of n in (A), the best performing algorithms belong to the group of GAs using proportional
representations with the only exception for n = 1, where the performances of PMax-SH and
PMax-GA are statistically equivalent.

Figure 9.5 (B) plots the results for optimizing mission duration. Again we see an increase
in performance with increasing n, a trend that appears to be independent of the optimization
function used. For n = 1, performance ranges from an average of 6,654 time steps by PSame-
GA to an average of 10,030 time steps by PMax-GA. For n = 3, the range is an average of
9,067 time steps by PMax-SH to an average of 10,207 time steps by PSame-SH. For n = 5
and n = 7 performance ranges from 10,189 to 14,993 and from 11,287 to 15,786, respectively,
with PMax-SH performing the worst and PMax-GA performing the best in both cases. For
n = 9, performance ranges from 12,610 by PMax-SH to 16,012 by PHalf-GA. The best
performance achieved in set (B) is an average of 16,012 simulation time steps by PHalf-
GA in the n = 9 case, and PMax-GA with n = 5 performance of 15,786 is statistically
indistinguishable from this best. The best performance obtained by a SH algorithm is an
average of 14,615 achieved by Binary-SH with n = 5 which is significantly worse than the
best GA performance. Overall, for all n in (B), the best performing algorithms are again
GAs using proportional representations, with an exception in the case of n = 3. For n = 3
the best performing algorithm is an SH using proportional representation.

Figure 9.5 (C) plots the results for optimizing both mission productivity and duration.
These results exhibit similar trends as seen in the previous plots. Performance increases with
the increase of control vectors n used by control strategy Γn. Performance ranges are:
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• for n = 1, 40,592 by PSame-GA to 59,781 by PMax-GA;

• for n = 3, 63,713 by Binary-GA to 72,641 by PHalf-GA;

• for n = 5, 61,945 by PMax-SH to 77,296 by PHalf-GA;

• for n = 7, 57,312 by PMax-SH to 78,626 by PSame-GA; and

• for n = 9, 56,062 by PMax-SH to 78,860 by PSame-GA.

The best performance obtained in this set (C) is 78,860 by PSame-GA with n = 9. The
performance of 78,626 by PSame-GA with n = 7 is statistically indistinguishable from the
best. The best performance obtained by a SH algorithm is 75,843 by PSame-SH with n = 7
which is significantly worst than the best GA performance. Overall, for any n in (C), the
best performing algorithms are again GAs using proportional representations.

All of these experiments use the parameters settings show in Table 9.2; however, addi-
tional experiments have been performed with other mutation rates and population sizes to
ensure that the qualitative nature of the results in this section is robust and not an artifact
of a particular set of parameters.

9.6 Discussion

According to the NFL theorem [WM97], there is no universally best algorithm; however,
there are algorithms that are best suited for particular problem classes. Given an algorithm,
the choice of representation can have a significant impact on its effectiveness. Simpler repre-
sentations may be inadequate in the amount of information that can be expressed [DM83].
More complex representations result in larger search spaces which can increase the difficulty
of a problem and the computational cost of a learning algorithm [Sam94]. Different types
of representations may have biases that make them more or less easily manipulated by a
learning algorithm [CS92, LS87]. In this paper, we examine the performance of two ML
algorithms using two different types of problem representations applied to the optimization
of an ALSS.

9.6.1 Algorithms: GA vs. SH

In comparing all of the GA and SH variants that we test, we find that GAs tend to have better
overall performance than SHs for the ALSS problem. GAs generate the best performance
in all groups (as defined by optimization objective and control strategy) with only once
exception: optimizing mission duration with n = 3. GA performance consistently increases
with increasing n. SH becomes less competitive with GAs as n increases and the worst
performance is consistently and noticeably found using PMax-SH. GA performance remains
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relatively stable as the problem size scales up while SH shows noticeable decline as problem
size grows. We attribute the weaknesses of SH to the simplicity of the SH search strategy –
move in single steps only toward higher fitness points – which can easily become trapped at
local optima. In addition, the SH algorithm we selected does not allow random walks among
solutions of equivalent fitness which can further exacerbate the problem of becoming trapped
(we plan to eliminate this restriction in future experiments). The more complex operators
and population based approach of a GA appear to provide a better search strategy for this
type of problem. Nevertheless, the simple SH search strategy is still a competitive strategy
for an ALSS as it is usually only outperformed by a small, albeit statistically significant,
margin.

9.6.2 Control Strategies: n = 1, 3, 5, 7, 9

The plots from Figure 9.5 show a clear trend: performance improves as the number of
control vectors, n, used in the optimization increases. This result remains fairly robust
throughout our experiments and supports and extends previous work [KBS01] where this
same trend is reported for a simple GA. We attribute this behavior to the fact that more
control vectors allows for a more subtle control of the ALSS, leading to noticeably improved
performance. There is, however, a trade-off between the better control allowed by a high
n and the consequent increase in the search space size. Increasing n increases the search
space exponentially. As a result, we expect to see a performance drop at high values of n
due to searchability issues. We do not observe such expected behavior for high n which we
speculate is due to the fact that we work with relatively low values of n (from 1 to 9). We
do observe, however, that after n = 5, increases of n yield diminishing performance returns.

9.6.3 Representations: Binary vs. Proportional

The proportional representation is inspired by the natural process of gene expression and the
concept that, within a genome, what is most important is whether or not the necessary genes
exist. Of lesser impact is the order in which existing genes are arranged. This concept led to
the development of a content-based representation for GAs instead of the traditional order-
based representation. Previous investigations on the impact of proportional representation
on GAs have shown advantages to using a proportional representation over traditional bi-
nary representation on several simple problems: number matching, resource allocation, and
symbolic regression [WG02]. In this paper, we extend those results by showing that this ad-
vantage persists and is even more noticeable on a significantly more complex problem, control
of a coupled dynamical system. The best performing algorithms for each set of experiments
are consistently proportional algorithms. It is important to note is that coupled dynamical
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systems are very sensitive to initial conditions. We suspect that the automatic adjustment
of resolution in the proportional representation and its ability to allocate genomic resources
in response to fitness payoffs have an important role in the suitability of this representation
this problem. This is clearly an area for further study.

Despite the close analogy to genetics, there is no a priori rationale that restricts the
proportional representation to be used only with evolutionary algorithms. We implement and
test this same representation in a SH. Results indicate that, in contrast with the performance
increase seen in a proportional GA, there is not consistent performance improvement of a
proportional SH over a binary SH. The performance of a proportional SH is only comparable
to the performance of traditional binary SH. We believe that a likely reason for this difference
is that the SH algorithm that we selected only moves to points of greater fitness in the search
space. As a result, it does not allow random walks on neutral networks of points with equal
fitness. Proportional representation is known to have a high redundancy which forms neutral
networks in the search space that arguably can improve the search abilities of algorithms;
but for this to be beneficial, an algorithm would have to allow random walks. We plan to
re-examine SH performance while allowing random walks. We should also note that, while
SH uses an operator analogous to mutation to move within a search space, SH lacks an
operator analogous to GA recombination.

9.6.4 Resolution: P-Same vs. P-Half vs. P-Max

In Figure 9.5, the x-axis orders the tested algorithms into groups of four: the Binary, PSame,
PHalf, and PMax representations. Consecutive foursomes indicate GA and SH algorithms
for the five control strategies: n = 1, 3, 5, 7, 9.

We previously noted that, overall, the best performing algorithms tend to be GAs using
a proportional representation. Closer examination of the best performing proportional algo-
rithm within each foursome suggests that the value of n can affect the type of proportional
representation that performs best. For low n (n = 1) the best performing algorithms all
use the PMax representation. For high n (n = 7, 9) the best performing algorithms tend
to use the PSame representation. For middle values of n (n = 3, 5) the best performing
algorithms tend to use PHalf or PMax for a GA and PSame or PHalf for an SH. We believe
that this variation is due to the resolution-searchability trade-off described in section 9.6.2:
low resolution limits the quality of solutions, but reduces the search space allowing solutions
to be found faster; high resolution increases solution quality at the cost of increasing the size
of the space to search. Low n generates a small search space on which there is advantage
to having the maximum possible resolution, PMax, in the representation. High n results
in large search spaces, making the limited resolution and relatively smaller search space of
PSame more attractive because of its increased searchability.
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Table 9.5: Summary of experimental results of comparing GA with binary and proportional
representations to optimize the ALSS simulator in 45 different configurations..

Comparing Proportional-GA and Binary-GA
(number of experiments; each experiment = 40 runs)

Proportional-GA No statistical Proportinoal-GA performs
outperforms Binary-GA difference worst than Binary-GA

P-Same 8(53%) 4(27%) 3(20%)
P-Half 11(73%) 3(20%) 1(7%)
P-Max 11(73%) 4(27%) 0(0%)
Total 30(67%) 11(24%) 4(9%)

9.6.5 Performance: Comparing Binary and Proportional Repre-
sentations

In order to compare the relative performance of proportional and binary representations,
we calculate, for all the experiments reported in Figure 9.5, the number of times that an
algorithm using a proportional representation is statistically better, comparable, or worse
than the same algorithm using a binary representation. Table 9.5 presents our results for
the GA and Table 9.6 for the SH.

In Table 9.5, PSame-GA uses the same genomic length as Binary-GA which, according
to equation 9.1, puts PSame-GA at sharp disadvantage. Despite this limitation, PSame-GA
performs better than Binary-GA on 53% of the experiments and worse on 20%. PHalf-GA
uses a longer genome than Binary-GA, but is still theoretically at a disadvantage because
it has only half of the genomic length required by equation 9.1 to ensure comparable reso-
lutions. Despite this theoretical limitation, PHalf-GA performs better than Binary-GA on
73% of the experiments, and worse on only 7% of the experiments. PMax-GA uses a vari-
able length genome with the maximum length equal to the required genomic length given by
equation 9.1. As a result, PMax-GA and Binary-GA are comparable in terms of available
resolution. PMax-GA perform better than Binary-GA 73% of the time and never performs
worse than the Binary-GA. Overall, for all of the cases compared in Table 9.5, proportional
GAs perform better than binary GAs on 67% of the experiments and worse on 9% of the
experiments.

In Table 9.6, we observe a very different situation for the SH algorithms. The PSame-SH
representation outperforms Binary-SH in 40% of the experiments but performs worse in 20%.
The situation becomes worse as we increase the resolution of the proportional representation
with 33% better and 27% worse for PHalf-SH, and 33% better and 60% worse for PMax-
SH. There is a clear preference for compact representations over high resolutions. Overall,
the proportional SHs perform better than binary SHs on 35.5% of the experiments, worse
on 35.5% of experiments, and show no statistical difference on 29% of experiments. As a
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Table 9.6: Summary of experimental results of comparing Proportional-SH and Binary-SH
to optimize the ALSS simulator in 45 different configurations.

Comparing Proportional-SH and Binary-SH
(number of experiments; each experiment = 40 runs)

Proportional-SH No statistical Proportional-SH performs
outperforms Binary-SH difference worst than Binary-SH

P-Same 6(40%) 6(40%) 3(20%)
P-Half 5(33%) 6(40%) 4(27%)
P-Max 5(33%) 1(7%) 9(60%)
Total 16(35.5%) 13(29%) 16(35.5%)

result, there does not appear to be a clear advantage to using either binary or proportional
representation in an SH.

9.7 Summary

Advanced Life Support Systems are a crucial component for successful space exploration. An
ALSS is a coupled dynamical system whose overall behavior is difficult to predict and whose
behavior is highly sensitive to initial conditions and control parameters. The unpredictability
of such systems limits the effectiveness of deliberative and hand-crafted control algorithms.
We investigate the performance of two well known ML techniques, genetic algorithms and
stochastic hill-climbing, on the problem of learning how to control an ALSS.

The selection of representation can have a significant impact on the effectiveness and
efficiency of a learning algorithm. The same problem encoded with two different represen-
tations can appear to an ML algorithm to be two entirely different problems [MW94]. We
compare the performance of a GA and SH using two different types of representations: a
traditional binary representation and a novel proportional representation. The proportional
representation, originally developed for GAs, is a content-based representation derived from
the concept of gene expression. Its ability to dynamically adapt the distribution of genomic
resource along with a solution allows it to naturally evolve both parameters values and their
appropriate resolutions. We hypothesize that this unique ability may make the proportional
representation particularly suitable for the highly sensitive nature of coupled dynamical sys-
tems.

We perform experiments on three ALSS optimization problems using five control strate-
gies. For each of these experiments, we compare the performance of a GA and SH, each using
a binary representation and three variations of proportional representations: PMax which
has an encoding resolution equal to that of the binary representation, PHalf which has an
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encoding resolution that is one half of PMax, and PSame which has a severely penalized
encoding resolution as compared to the binary representation.

Throughout our experiments, we observe that the GA consistently performs as well or
better than the SH. The top performance is achieved by a GA variant in all the fifteen
experiments, with only one exception: optimizing mission duration with strategy Γ3. In fact,
all of the best performers use the proportional representation, supporting our hypothesis that
a proportional representation is competitive. For lower values of n, PMax-GA appears to be
the strongest algorithm, and for higher values of n, PSame-GA appears to be the strongest
algorithm. We attribute the differences to the trade-off between the size of the search space
and the resolution of the representation. For lower n, the search space is small enough to
afford a full resolution of parameters, while for high n and its large search space, preference
is given to limited resolution representations to favor searchability over resolution.

We observe that all algorithms show increasing performance as the number of vectors, n,
in the control strategy Γn increases. We attribute this behavior to the fact that more control
vectors are likely to allow a more precise control of the system. This result extends previous
results obtained for a simple GA to the eight algorithm-representation combinations tested
in this paper.

Finally, we compare the relative performance of the three proportional representations
variants with binary representation for each algorithm. When using a GA, all of the pro-
portional representation variants tend to be more successful than binary representation. On
average, the proportional representation GAs outperform the binary GA 67% of the time
and perform worse than the binary GA 9% of the time. The PMax-GA representation ap-
pears to be strongest, outperforming Binary-GA 73% of the time; exhibiting statistically
equivalent performance the remaining 27% of the time. PMax-GA is never outperformed by
Binary-GA. Comparison of proportional and binary representations for the SH yields a very
different picture. On average the proportional SHs outperform the binary SH 35% of the
time, and they are outperformed by the same percentage. As a result, while proportional
representation yields a strong improvement in performance for a GA, it does not significantly
affect the performance of the SH algorithms.
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CHAPTER 10

FUTURE WORK

This thesis begins by proposing to study whether self-organization of protein-analogous struc-
tures at the representation level can increase the degree of complexity and novelty of the
solutions obtainable using evolutionary search techniques. Then it identifies two fundamental
aspects of this proteomics approach to EC: (1) proteins interact in multisets, and (2) proteins
are functional structures. This thesis analyzes the first one. There are many directions of
future work on the second. Three of them are listed below.

10.1 Self-organization in Representations

One area for future research is to explore domain-independent methods for representing
complex solutions with relatively simple self-organizable building blocks. Self-organization
is present in almost every level of natural evolution: gene regulation networks, protein inter-
action networks, metabolic pathways, cellular organization, etc, but it is not usually present
in evolutionary algorithms. Perhaps the self-organization of genotypic instructions into phe-
notypes is a key ingredient to unleashing the evolution of complex and scalable solutions
with desirable emergent phenomena such: scale-free, adaptability, innovativeness, evolvabil-
ity, and robustness.

10.2 Proteins as Representational Building Blocks

Another area of future search is whether or not new recent discoveries on protein function has
something to teach us about functional building block design for EC problem representation.

To design of representations that combine simple functional building blocks into in-
cresingly complex solutions, basic understanding of the required characteristics of these
building blocks and their interactions is required. Some relevant questions include: How
many building blocks should be produced? How do they function? How do they interact?
There is a clear need for methods of design and evaluation for self-organizable, functional
building blocks for problem representation. The problem of designing basic building blocks
that self-reproduce, self-assemble, and self-organize into increasingly complex functionalities
has already been solved by nature. DNA is the information storage structure, proteins are
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Figure 10.1: Genes, mRNA, and proteins as the basic building blocks of biological function.
These basic components interact at many levels. Gene regulation networks, protein-protein
interaction networks, and metabolic networks among others describe their interactions. From
these interactions, complex high-level biological functionality emerge. Recently, it has been
shown that these basic biological components self-organize into scale-free hierarchical net-
works with embedded modularity. It has also been shown that these type of networks are
robust and error tolerant. These results seem to suggest that scale-free hierarchical networks
with embedded modularity are a potentially good architecture for combining building blocks
into high-level functionality in general.

the basic building blocks of biological functionality, and the universal genetic code defines the
mapping between them. Beyond the protein level, the problem becomes increasingly complex
and less well understood. At this level, we start talking about gene regulatory networks and,
in a wider sense, about metabolic pathways. Proteins cooperate, compete, and antagonize
in order to ultimately produce complex high-level functions. Proteins can self-organize into
bigger molecular machinery and can trigger the production of more proteins on demand. In
isolation, proteins implement to a great extent the basic functionality of their corresponding
genes and, in conjunction with other proteins, they contribute as basic building blocks to
the construction of an organism’s increasingly complex functionalities (see Figure 10.1).
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10.3 Building Blocks Interactions

A third area for future research focuses on how representational building blocks should in-
teract. The relatively recent availability of actual genomic sequences has opened a new
perspective: the study of a biological organism as a whole. Genomics and proteomics are
dedicated not only to produce but also to analyze all of this newly obtained data. New ap-
proaches for unraveling large-scale biological organization are emerging thanks to this wealth
of information. One of the simplest approaches charts interaction graphs from the available
data and topologically analyzes these graphs to discover hidden properties or underlying
organizational principles that could potentially improve understanding of these complex sys-
tems. The nodes of these interaction graphs (or interaction networks) are typically basic
biological building blocks (genes, mRNAs, proteins, and metabolites) and the edges repre-
sent functional relationships. For example, gene regulation networks relate genes with the
proteins that promote their expression; protein-protein interaction networks chart function-
ally related proteins; and metabolic networks relate the reactant and product substrates of
metabolic reactions. The information provided by these networks is at the organism level
and its analysis provides information about the large-scale organization of the interactions
among basic biological building blocks. Recent work has found that these networks of inter-
action share many properties such as presence of recurrent patterns, scale-free (preferential
attachment), and hierarchically modular topological organization, as shown in Table 10.3.
This suggests that the underlying principles that govern functional building block interac-
tion in nature could be used to engineer competent systems to combine functional building
blocks for EC representations.
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Table 10.1: Summary of recent results related to biological building block organization,
over 43 different organisms representing all three domains of life.

Interaction Properties of Biological Building Blocks
Property Further information
Recurrent patterns:
basic network building blocks that Autoregulation, multicomponent loop,
frequently reappear, network motifs. [OB02] feedforward loop, single and multi input

motifs, regulator chain [Lee02, Mil02, SMM02].
Scale-free:
connectivity that follows the power law [Pri76] Small-world [WF02], and
with preferential attachment property. [BA99] scale-free [BA99, JTA00, JBT01, Wuc02].
Hierarchical modularity:
building blocks are organized hierarchically Hierarchical organization [OB02, Rav02],
into functional modules. [HHL99] modular organization [HHL99, BDR03, CD02], and

robustness [AJB00, Jeo01].
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CHAPTER 11

CONCLUSION

As the complexity of our society and computational resources increases, so does the complex-
ity of the problems that we approach using evolutionary search techniques. There are recent
approaches to deal with the problem of scaling evolutionary methods to cope with highly
complex difficult problems. Many of these approaches are biologically inspired and share
an underlying principle: a problem representation based on basic representational building
blocks that interact and self-organize into complex functions or designs. The observation
from the central dogma of molecular biology that proteins are the basic building blocks of life
and the recent advances in proteomics on analysis of the structure, function and interaction
of entire protein complements, lead us to propose a unifying framework of thought for these
approaches: the proteomics approach.

This thesis identifies two fundamental aspects of transition from traditional approaches
to this new approach: (1) proteins interact in a three dimensional medium analogous to a
multiset; and (2) proteins are functional structures. The first aspect is foundational for the
study of the second. This thesis provides an analysis of the first aspect. In carrying out this
analysis, we observe that there is a fundamental departure from typical EC methods: using a
multiset of proteins as an intermediate mapping results in a completely location independent
problem representation where the location of the genes in the genome has no effect on the
fitness of the solutions. These are proteome-based location independent representations.

This thesis gives a formal analysis of the proteome-based location independent geno-
type to phenotype mapping. Using combinatorics, we provide close form expression for the
relationship between individual lengths and alphabet sizes that will result in comparable
solution spaces. Proteome-based location independent representations require significantly
larger alphabets of symbols in comparison with traditional representations to encode the
same amount of information. This is expected as we encode information in the symbols of
the alphabet instead of in the location of these symbols. In a way, this is the price to pay
for complete location independence. This thesis also analyzes the neutral classes formed by
this representation. A neutral class, for this representation, includes all the possible permu-
tations of the genes in an individual genome. It is obvious that these neutral classes can
grow very easily. Again, this is the price to pay for truly complete location independence.

Contrary to what we would expect from these theoretical limitations, we provide a sig-
nificant amount of experimental evidence that proteome-based location independent repre-
sentations in a simple GA are, in many cases, better than or, at worst, comparable to a
traditional GA using a binary representation. For all experiments, we use a simple genetic
algorithm with a proteome-based location independent representation that we call the pro-
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portional genetic algorithm. The question then is: what causes the proteome-based location
independent representation to perform well?

This thesis provides a possible explanation. Among the causes that make these represen-
tations effective, it singles out three. First, these representations accentuate the key property
required to perform stochastic search. Second, once genomic self-similarity has emerged, the
schemata disruption cause by crossover is minimal. Finally, by definition, these representa-
tions are not subject to negative effects associated with the arrangement of the genes on a
genome such positional bias.

Proteome-based location independent genomes are free to self-organize because there is
no selective pressure for any particular genomic ordering. These genomes self-organize into
structures resembling white noise that are self-similar with respect to fitness. We start this
thesis by pointing out that stochastic search techniques, such EC, rely on a key property
that is common to many difficult problems: there is a positive correlation between the form
and quality of candidate solutions. The proteome-based location independent representation
appears to accentuate this property in the following way. First, crossover becomes an “av-
eraging” operator. Because of the self-similarity property, each segment being crossed over
is a valid representative of the fitness of the entire individual. As information is encoded in
protein concentrations, it does not matter where in an individual the segment being crossed
over ends up, it will always have the same effect: offspring are essentially weighted aver-
ages of their parents. The weights are directly proportional to the sizes of the segments.
Second, the effect of mutation is also guaranteed to be smooth. The effect of mutating a
single symbol is to subtract one unit from one protein concentration and add one unit to
another. In traditional representations the crossover operator disrupts a building block or
a schema if the crossover point splits the schema. In self-similar genomes, when crossover
split a schema, the resulting halves are valid representatives of the original one. As a result,
once the self-similarity with respect to fitness has emerged, disruptions of schema caused by
crossover are minimal.

This thesis concludes that the use of protein analogous structures as an intermediate rep-
resentation in evolutionary computation is not only feasible but in some cases advantageous.
Finally, it provides a foundation for further research on proteins as functional self-organizing
structures capable of building increasingly complex functionality, and as basic units of prob-
lem representation for evolutionary computation.

11.0.1 Limitations

Completely location independent representations also introduce new problems of their own
such as the need for large alphabets of symbols and the theoretical need for larger repre-
sentation spaces than traditional approaches. The need of large alphabets can be overcome
partially by introducing order oriented encoding for the alphabet symbols themselves. For
instance an alphabet of 65,536 symbols can be defined by using 8-symbol strings from an
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auxiliary alphabet of size 4. The problem of larger representations spaces is more fundamen-
tal. This problem is linked to the definition of complete location independence itself and is a
limitation for this type of representational approaches. The larger a string of genes, the larger
the number of strings that will contain the same information on different orderings. In order
to enforce complete location independence, all these strings need to map to the same neutral
class. The growth of these neutral classes triggers the growth of the representation space.
As a result, algorithms using complete location independent approaches require more com-
putational space than traditional algorithms for the same problem complexity. Therefore, if
space is a concern the use of traditional approaches is recommended.

11.0.2 Contributions

This thesis contributes to the field of Evolutionary Computation in the following ways:

• It proposes a new approach to EC based on the central dogma of molecular biology.
There are many approaches to scale EC to high complexities based on biologically
inspired principles such embryogenesis and developmental biology. The proteomic ap-
proach, however, captures and makes explicit the underlying principle of many of these
representational approaches: basing problem representation on basic building blocks that
interact and self-organize into complex functions or designs. This thesis provides the
first comprehensive study of one of the basic aspects of this approach: proteome-based
location independent representations.

• It defines an empirical framework with which to study proteome-based location inde-
pendent representations using a genetic algorithm, the proportional genetic algorithm.
The PGA proteome-based location independent representation, by definition, does not
suffer from traditional EC hurdles associated with the arrangement of the genes or posi-
tional effect in a genome. This improvement is possible simply because proteome-based
representations are based on “genomic content” whereas traditional representations are
based on “genomic order”. Eliminating these hurdles delivers an algorithm that is less
sensitive to implementation decisions and therefore more robust. Such a representation
has the ability to self-organize into a genomic structure that appears to favor positive
correlations between the form and quality of represented solutions. Additionally, it
provides experimental evidence of some positive effects such as automatic adjustment
of genomic resources and formation of self-similar building blocks.

• It provides theoretical and empirical evidence that a protein based representation is
feasible and effective for practical problems. It shows theoretically the relationship
between comparable genotypic and phenotypic space sizes needed for a fair comparison
and provides substantial empirical evidence (380 million fitness evaluations over various
problems and parameters settings) of the competence of this approach.
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• It presents a case study for the proteomic approach to EC on a nontrivial and difficult
real world problem: optimizing control of Advance Life Support Systems (ALSS), part
of the NASA BioPlex project. This case study illustrates the effects of this approach
on evolutionary algorithms and compares it to the effects of this approach on hill-
climbing algorithms. This thesis gives a formalization of this problem, its optimization
objectives, and its strategies in a framework given in Appendix A.
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APPENDIX A

ADVANCED LIFE SUPPORT SYSTEM

SIMULATOR
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The simulator used in this paper is the Advanced Life Support System simulator (ALSS),
based on the NASA BioPlex simulator [Tri99]. The ALSS is a coupled dynamical system.
The behaviors of its components or modules are completely deterministic and can be char-
acterized by the state of the variables in any time step of a simulation. Transition equations
determine the next simulation step for any given set of these state variables. Nevertheless,
the behavior of the entire system of coupled modules is difficult to predict. The following is
a mathematical description of the ALSS simulator used in this paper.

A.1 ALSS Simulation Mathematical Description

Definition 1 (ALSS) Formally an ALSS simulation A is denoted by a 4-tuple:

A = 〈Q, ~q0, C, δC〉

where:

Q is the set of simulation states,

~q0 in Q is the initial state of the simulation,

C is the control strategy that defines a vector of control parameters for each sim-
ulation time step,

δC finite set of transition equations 1

Definition 2 (Simulation Variables) Let V denote the set of all the variables associated
with the simulation A, then:

V def
= {~e,~r, ~o, ~a, ~w}

where:

~e
def
= 〈eenergy, eair.o2, eair.co2, ewater.clean, ewater.dirty, efood, escience, estore.water, estore.food, estore.o2, estore.co2〉

, vector of environmental variables,

~r
def
= 〈rstatus, rfood, rwater, rair.o2, rstarvation, rdehydration, rasphyxiation〉, vector of crew

variables,

~o
def
= 〈ostatus, oenergy, owater, olow.energy, olow.water, oage, obiomass, oo2.released, oco2.absorved〉,

vector of crop variables,

~a
def
= 〈aenergy, alow.energy, arecovery.time〉, vector of air recovery variables,

1Due to space constraints, we do not include the water, air, and food store equations in this mathemat-
ical description, nor the biomass related equations. For a complete mathematical description of the ALSS
simulator used in this paper please refer to [GW03].
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~w
def
= 〈win, wlow.energy, wuptime, wpotable, wenergy〉, vector of water recovery vari-

ables,

Definition 3 (Simulation State) A simulation state, ~q in Q, is a particular assignment
of values for all the simulation the variables in V. The simulation state at time t is:

~qt
def
= 〈~et,~rt, ~ot, ~at, ~wt〉

Definition 4 (Initial State) The initial simulation state denoted by ~q0 in Q, is a defined
as follows:

~q0
def
= 〈~e0,~r0, ~o0, ~a0, ~w0〉

where:

~e0
def
= 〈eenergy = 10000, eair.o2 = 3000×0.2095, eair.co2 = 3000×0.0003, ewater.clean =

10, ewater.dirty = 0, efood = 4, escience = 0, estore.water = 500, estore.food =
500, estore.o2 = 50000, estore.co2 = 50000, 〉,

~r0
def
= 〈rstatus = 1, rfood = 0, rwater = 0, rair.o2 = 0, rstarvation = 0, rdehydration =

0, rasphyxiation = 0〉,
~o0

def
= 〈ostatus = 1, oenergy = 0, owater = 0, olow.energy = 0, olow.water = 0, oage =

0, obiomass = 0, oo2.released = 0, oco2.absorved=0〉,
~a0

def
= 〈aenergy = 0, alow.energy = 0, arecovery.time = 0〉,

~w0
def
= 〈win = 0, wlow.energy = 0, wuptime = 10, wpotable = 0, wenergy = 0〉,

Definition 5 (Control Strategy) Let C denote a control strategy and be defined as fol-
lows:

C def
=

{
~c t

∣∣∣ (0 ≤ t ≤ Tmax)
∧

t ∈ N
}

where:

~c t def
= 〈ct

energy.to.air, c
t
energy.to.water, c

t
energy.to.food, c

t
water.to.crew, ct

water.to.crops, ct
activity.level〉

is the vector of control parameters values for time t,

C ∈ C , C is the set of all posible control strategies.

Definition 6 (Transition Equations) The set of transition equations denoted by δC, de-
fines how to obtain the next simulation state (t + 1) from the current state (t) for a given
control strategy C. The simulation, A, is a coupled dynamical system with four components:
crew, crops, air revitalization, and water revitalization. Therefore we have four sets of equa-
tions:

δC
def
= 〈δCcrew , δCcrops , δCairRevitalization

, δCwaterRevitalization
〉

where definitions for δCcrew , δCcrops , δCairRevitalization
, δCwaterRevitalization

are given below.
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Definition 7 (Crew Equations) δCcrew :

(rstatus)t+1 =





0 if [(rstatus)t = 0]
∨ [(rstarvation)t > RF.Del]
∨ [(rdehydration)t > RW.Del]
∨ [(rasphyxiation)t] > RA.Del],

(rstatus)t+
−0.01× (rstatus)t × [|(rfood)t < 0.25× RF.Req|]
−0.02× (rstatus)t × [|(rwater)t < 0.25× RW.Req|]
−0.1× (rstatus)t × [|(rair.o2)t < 0.25× RA.Req|] otherwise.

(rstarvation)t+1 =

{
(rstarvation)t + 1 if [(rfood)t < 0.25× RF.Req],
0 otherwise.

(rdehydration)t+1 =

{
(rdehydration)t + 1 if [(rwater)t < 0.25× RW.Req],
0 otherwise.

(rasphyxiation)t+1 =

{
(rasphyxiation)t + 1 if [(eair.o2)t < 0.25× RA.Req],
0 otherwise.

(eair.o2)t+1 =





(eair.o2)t − 537.6/24 if [ct
activity.level = SLEEP],

(eair.o2)t − 832.8/24 if [ct
activity.level = LOW],

(eair.o2)t − 1200/24 if [ct
activity.level = MED],

(eair.o2)t − 1600.8/24 if [ct
activity.level = HIGH].

(eair.co2)t+1 =





(eair.co2)t + 643.2/24 if [ct
activity.level = SLEEP],

(eair.co2)t + 996.0/24 if [ct
activity.level = LOW],

(eair.co2)t + 1433.7/24 if [ct
activity.level = MED],

(eair.co2)t + 1910.4/24 if [ct
activity.level = HIGH].

(ewater.clean)t+1 =





(ewater.clean)t − 0.75× (rwater)t if [ct
activity.level = LOW],

(ewater.clean)t − 0.85× (rwater)t if [ct
activity.level = MED],

(ewater.clean)t − 0.95× (rwater)t if [ct
activity.level = HIGH],

(ewater.clean)t otherwise.

(ewater.dirty)t+1 =





(ewater.dirty)t + 0.75× (rwater)t if [ct
activity.level = LOW],

(ewater.dirty)t + 0.85× (rwater)t if [ct
activity.level = MED],

(ewater.dirty)t + 0.95× (rwater)t if [ct
activity.level = HIGH],

(ewater.dirty)t otherwise.

(efood)t+1 =





(efood)t − 0.75× (rfood)t if [ct
activity.level = LOW],

(efood)t − 0.85× (rfood)t if [ct
activity.level = MED],

(efood)t − 0.95× (rfood)t if [ct
activity.level = HIGH],

(efood)t otherwise.
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(escience)t+1 =





(escience)t + 0.75× RNumber × RSciFact × (rstatus)t if [ct
activity.level = LOW],

(escience)t + 0.85× RNumber × RSciFact × (rstatus)t if [ct
activity.level = MED],

(escience)t + 0.95× RNumber × RSciFact × (rstatus)t if [ct
activity.level = HIGH],

(escience)t otherwise.

Where:
(rwater)t = min[ct

water.to.crew, (ewater.clean)t]

(rfood)t = min[RF.Req, (efood)t]

(rair.o2)t = min[RA.Req, (eair.o2)t],

the following are constants: RF.Del(crew food delay) = 120, RW.Del(crew water delay) =
72, RA.Del(crew air delay) = 3, RF.Req(crew food requirement) = 1/6, RW.Req(crew water re-
quirement) = 1/6, RA.Req(crew air requirement) = 40000, RNumber(crew number) = 4, and
RSciFact(crew science factor) = 1. We used the notation: [|p|] = 1 iff p is True, [|p|] =
0 otherwise.; min[A,B] = A iff (A ≤ B), min[A,B] = B otherwise.

Definition 8 (Crop Equations) δCcrops :

(ostatus)t+1 =





0 if [(ostatus)t = 0]
∨ [(olow.energy)t > OL.noE]
∨ [(olow.water)t > OL.noW],

(ostatus)t+
−0.03× (ostatus)t × [|(oenergy)t < 0.25|]
−0.01× (ostatus)t × [|(owater)t < 0.25|] otherwise.

(olow.energy)t+1 =

{
(olow.energy)t + 1 if [(oenergy)t < 0.25],
0 otherwise.

(olow.water)t+1 =

{
(olow.water)t + 1 if [(owater)t < 0.25],
0 otherwise.

(oage)t+1 =

{
0 if [

(oage)t

24
> 88],

(oage)t + 1 otherwise.

(eenergy)t+1 = {(eenergy)t − (oenergy)t}
(ewater.clean)t+1 = {(ewater.clean)t − (owater)t}
(ewater.dirty)t+1 = {(ewater.dirty)t + (owater)t}

(efood)t+1 =

{
(efood)t + (obiomass)t × 0.05× (ostatus)t if [(obiomass)t ≥ 0],
(efood)t otherwise.

(eair.o2)t+1 = {(eair.o2)t + (oo2.released)t × (ostatus)t}
(eair.co2)t+1 = {(eair.co2)t + (oco2.absorved)t × (ostatus)t}
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Where:
(oenergy)t = min[ct

energy.to.food, (eenergy)t],

(owater)t = min[ct
water.to.crops, (ewater.clean)t],

and the following are constants: OL.noW(crop life with no water) = 120, and OL.noE(crop life
with no energy) = 168.

Definition 9 (Air Revitalization System Equations) δCairRevitalization
:

(alow.energy)t+1 =

{
(alow.energy)t + 1 if [(aenergy)t < 0.25],
0 otherwise.

(arecovery.time)t+1 =





(arecovery.time)t − 1 if [(aenergy)t ≥ 0.25] ∧ [(arecovery.time)t > 0],
AT.rec if [(alow.energy)t ≥ AA.del],
(arecovery.time)t otherwise.

(eair.o2)t+1 =

{
(eair.o2)t + 50× (aenergy)t if [(arecovery.time)t = 0],
(eair.o2)t otherwise.

(eair.co2)t+1 =

{
(eair.co2)t − 50× (aenergy)t if [(arecovery.time)t = 0],
(eair.co2)t otherwise.

(eenergy)t+1 = {(eenergy)t − (aenergy)t}
Where:

(aenergy)t = min[ct
energy.to.air, (eenergy)t],

and the following are constants: AT.rec(air revitalization system startup time) = 3, and
AA.del(air revitalization systems maximum energy delay time) = 1.

Definition 10 (Water Revitalization System Equations) δCwaterRevitalization
:

(wuptime)t+1 =

{
0 if [(wlow.energy)t > WT.sdo],
(wuptime)t + 1 otherwise.

(win)t+1 = {(win)t + (ewater.dirty)t − (wpotable)t}

(wpotable)t+1 =





0 if [(wenergy)t < 0.25],
WW.rra × (win)t if [((wuptime)t/WT.wup) ≥ 1],
((wuptime)t/WT.wup)×WW.rra × (win)t otherwise.

(wlow.energy)t+1 =

{
(wlow.energy)t + 1 if [(wenergy)t < 0.5],
0 otherwise.

(ewater.dirty)t+1 = 0

(ewater.clean)t+1 = {(ewater.clean)t + (wpotable)t}
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(eenergy)t+1 = {(eenergy)t − (wenergy)t}
Where:

(wenergy)t = min[ct
energy.to.water, (eenergy)t],

and the following constants: WT.wup(water revitalization system warmup time) = 10, WT.sdo(water
revitalization system shutdown time) = 5, and WW.rra(water recovery rate) = 0.97.

Definition 11 (Simulation Step) Applying the transition equations δC to the state ~qt we
obtain the next state ~qt+1 of the simulation A

~qt+1
def
= δC(~qt)

where:
δC(~qt)

def
= δCwaterRevitalization

(δCairRevitalization
(δCcrops (δCcrew (~qt))))

Definition 12 (Simulation t Steps) The reflexive and transitive closure of δC is denoted
by ˆδC,t :

~qt
def
= ˆδC,t(~q0)

Definition 13 (Simulation End time) Simulation A ends when the environment variable
crew status, rstatus, is equal to zero (the environment is not longer able to support human
life) or when the limit time for the simulation Tmax is reached. We denote this ending time
as tFinal

A,

tFinal
A def

=
min

t ≤ Tmax

[
~qt = ˆδC,t(~q0)

∧
(rstatus)t = 0

]

where:

(rstatus)t ∈ ~qt, ~qt ∈ Q , and A = 〈Q, ~q0, C, δC〉.
Definition 14 (Final State) The final state of simulation A is denoted by ~qAtFinal

and
defined as follows:

~qAtFinal

def
=

{
~qt

∣∣∣ ~qt = ˆδC,t(~q0)
∧

t = tFinal
A

}

where:

~qAtFinal
, ~qt ∈ Q , and A = 〈Q, ~q0, C, δC〉.

A.2 Defining the Optimization Problem

Definition 15 (Optimization 1: maximize mission productivity) Let COpt1 denote the
optimal control strategy for maximizing mission productivity, and be defined as follows:

COpt1
def
=

{
Cj

∣∣∣∣
( ∀
Ci ∈ C

) [
(escience)

Aj

tFinal
≥ (escience)

Ai
tFinal

]}

where
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COpt1 , Ci, and Cj ∈ C; Ai = 〈Q, ~q0, Ci, δC i〉; Aj = 〈Q, ~q0, Cj, δCj〉; (escience)
Ai
tFinal

∈
~qAi
tFinal

; (escience)
Aj

tFinal
∈ ~q

Aj

tFinal
; and C is the set of all posible control strategies;

Definition 16 (Optimization 2: maximize mission duration) Let COpt2 denote the op-
timal control strategy for maximizing mission duration, and be defined as follows:

COpt2
def
=

{
Cj

∣∣∣∣
( ∀
Ci ∈ C

) [
tFinal

Aj ≥ tFinal
Ai

]}

where

COpt2 , Ci, and Cj ∈ C; Ai = 〈Q, ~q0, Ci, δC i〉; Aj = 〈Q, ~q0, Cj, δCj〉; and C is the set
of all posible control strategies;

Definition 17 (Optimization 3: maximize mission productivity and duration) Let
COpt3 denote the optimal control strategy for maximizing mission productivity and mission
duration, and be defined as follows:

COpt3
def
=

{
Cj

∣∣∣∣
( ∀
Ci ∈ C

) [
(escience)

Aj

tFinal
+ 3× tFinal

Aj ≥ (escience)
Ai
tFinal

+ 3× tFinal
Ai

]}

where

COpt3 , Ci, and Cj ∈ C; Ai = 〈Q, ~q0, Ci, δC i〉; Aj = 〈Q, ~q0, Cj, δCj〉; (escience)
Ai
tFinal

∈
~qAi
tFinal

; (escience)
Aj

tFinal
∈ ~q

Aj

tFinal
; and C is the set of all posible control strategies;

A.3 Defining the Fitness Functions

Definition 18 (Fitness 1: mission productivity) Let f1(Ck) denote the fitness of the
control strategy Ck while optimizing mission productivity in simulation Ak, be defined as
follows:

f1(Ck) =
{

(escience)
Ak
tFinal

∣∣∣ (escience)
Ak
tFinal

∈ ~qAk
tFinal

∧
Ak = 〈Q, ~q0, Ck, δCk〉

}

Definition 19 (Fitness 2: mission duration) Let f2(Ck) denote the fitness of the control
strategy Ck while optimizing mission duration in simulation Ak, be defined as follows:

f2(Ck) =
{
tFinal

Ak
∣∣ Ak = 〈Q, ~q0, Ck, δCk〉

}

Definition 20 (Fitness 3: mission productivity and duration) Let f3(Ck) denote the
fitness of the control strategy Ck while optimizing mission productivity and mission duration
in simulation Ak, be defined as follows:

f3(Ck) =
{

(escience)
Ak
tFinal

+ 3× tFinal
Ak

∣∣∣ (escience)
Ak
tFinal

∈ ~qAk
tFinal

∧
Ak = 〈Q, ~q0, Ck, δCk〉

}
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Table B.1: Results of PGA1 and GA on finding randomly generated allocation values.
Average and standard deviation (std) over 100 runs.

Best of run (BOR) fitness, hits, generation found, and genome length
Algorithm BOR fitness (std) Hit:≥ 0.99 ≥ 1.0 Gen Found (std) Length (std)
ga 0.9857 0.0120 53 0 48.84 90.46 40.00 0.00
pga 40 0.9382 0.0483 2 0 5.56 2.61 40.00 0.00
pga 255 0.9869 0.0110 59 0 28.13 15.74 255.00 0.00
pga var 0.9941 0.0189 91 9 200.60 151.08 1641.31 702.53
pga varpp 0.9907 0.0145 72 0 138.64 143.24 278.72 137.97
pga NC 40 0.9495 0.0496 1 0 14.14 28.07 40.00 0.00
pga NC 255 0.9955 0.0063 94 34 76.62 90.01 255.00 0.00
pga NC var 0.9963 0.0135 95 30 200.66 147.86 1596.88 748.68
pga NC varpp 0.9914 0.0060 72 0 163.77 145.53 330.92 168.95

Best fitness and length averaged over last 100 generations, average run time
Algorithm Best fitness (std) Length (std) Time in secs. (std)
ga 0.9857 0.0120 40.00 0.00 13.96 1.24
pga 40 0.9382 0.0483 40.00 0.00 12.08 0.65
pga 255 0.9867 0.0108 255.00 0.00 15.75 4.38
pga var 0.9873 0.0341 1813.56 585.68 46.86 16.77
pga varpp 0.9808 0.0208 970.95 424.00 30.41 12.75
pga NC 40 0.9487 0.0495 40.00 0.00 12.48 1.02
pga NC 255 0.9942 0.0060 255.00 0.00 16.12 3.66
pga NC var 0.9929 0.0162 1810.30 606.37 47.53 13.72
pga NC varpp 0.9824 0.0075 986.95 440.54 30.78 8.19

The following is the full collection of tables and figures discussed on chapters 7, and
9. These chapters have already shown some elements of this collection. There are two
sets of figures and tables each one corresponding to one of these two chapters. The first
set corresponds to chapter 7 and provides all the data related to PGA1 on the resource
allocation problem and PGA2 and PGA3 on the number matching and symbolic regression
problem. The last set corresponds to chapter 9 and provides all the tables related to the
PGA applied to the ALSS problem.
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Table B.2: Results of PGA1 and GA on finding a fixed test allocation of values: 1:2:4:2:1.
Average and standard deviation (std) over 100 runs.

Best of run (BOR) fitness, hits, generation found, and genome length
Algorithm BOR fitness (std) Hit:≥ 0.99 ≥ 1.0 Gen Found (std) Length (std)
ga 0.9911 0.0009 80 0 62.00 111.72 40.00 0.00
pga 40 1.0000 0.0000 100 100 5.02 1.61 40.00 0.00
pga 255 0.9922 0.0000 100 0 18.66 2.12 255.00 0.00
pga var 0.9997 0.0003 100 60 173.70 155.94 1460.33 849.38
pga varpp 0.9961 0.0032 100 0 65.68 98.42 220.54 154.34
pga NC 40 1.0000 0.0000 100 100 5.82 2.99 40.00 0.00
pga NC 255 1.0000 0.0000 100 100 23.63 6.75 255.00 0.00
pga NC var 1.0000 0.0001 100 99 96.54 114.98 1129.86 933.11
pga NC varpp 0.9966 0.0029 100 0 117.27 137.60 227.63 171.19

Best fitness and length averaged over last 100 generations, average run time
Algorithm Best fitness (std) Length (std) Time in secs. (std)
ga 0.9914 0.0012 40.00 0.00 5.23 0.45
pga 40 1.0000 0.0000 40.00 0.00 3.34 0.48
pga 255 0.9918 0.0001 255.00 0.00 8.27 0.45
pga var 0.9978 0.0004 1978.44 339.27 53.62 8.87
pga varpp 0.9849 0.0050 1006.78 367.67 24.33 7.54
pga NC 40 1.0000 0.0000 40.00 0.00 3.76 0.43
pga NC 255 0.9994 0.0008 255.00 0.00 8.36 0.48
pga NC var 0.9979 0.0007 1841.11 581.90 50.63 14.96
pga NC varpp 0.9841 0.0038 1030.13 252.74 28.00 5.54
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Table B.3: Results of PGA2 and GA on the number matching problem. Average and
standard deviation (std) over 100 runs.

Best of run (BOR) fitness, hits, generation found, and genome length
Algorithm BOR fitness (std) Hit:≥ 0.99 ≥ 1.0 Gen Found (std) Length (std)
ga 0.9931 0.0096 87 0 41.94 75.25 40.00 0.00
pga 40 0.9498 0.0711 4 0 78.39 127.52 40.00 0.00
pga 255 0.9978 0.0025 99 0 266.64 123.66 255.00 0.00
pga var 0.9714 0.0686 76 0 274.25 157.47 1731.65 660.34
pga varpp 0.9815 0.0409 63 0 163.11 148.97 368.92 229.04
pga NC 40 0.9507 0.0688 5 0 68.43 109.18 40.00 0.00
pga NC 255 0.9974 0.0035 99 0 254.12 123.72 255.00 0.00
pga NC var 0.9755 0.0663 81 0 287.63 143.83 1772.37 626.79
pga NC varpp 0.9851 0.0334 64 0 230.43 159.72 432.59 252.73

Best fitness and length averaged over last 100 generations, average run time
Algorithm Best fitness (std) Length (std) Time in secs. (std)
ga 0.9931 0.0096 40.00 0.00 5.22 0.44
pga 40 0.9483 0.0710 40.00 0.00 3.08 0.27
pga 255 0.9947 0.0044 255.00 0.00 8.79 0.41
pga var 0.9660 0.0703 1779.87 648.86 51.57 17.97
pga varpp 0.9760 0.0419 713.61 492.30 22.60 12.50
pga NC 40 0.9500 0.0696 40.00 0.00 2.65 0.48
pga NC 255 0.9950 0.0037 255.00 0.00 7.04 0.24
pga NC var 0.9702 0.0672 1816.46 601.64 46.37 14.68
pga NC varpp 0.9785 0.0349 711.81 458.03 19.86 10.40
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Table B.4: Results of PGA3 and GA on the number matching problem. Average and
standard deviation (std) over 100 runs.

Best of run (BOR) fitness, hits, generation found, and genome length
Algorithm BOR fitness (std) Hit:≥ 0.99 ≥ 1.0 Gen Found (std) Length (std)
ga 0.9931 0.0096 87 0 41.94 75.25 40.00 0.00
pga 40 0.9183 0.0794 0 0 68.56 110.01 40.00 0.00
pga 255 0.9897 0.0284 94 0 276.82 147.93 255.00 0.00
pga var 0.9622 0.0757 70 0 290.03 150.39 1750.88 659.36
pga varpp 0.9599 0.0672 3 0 140.32 133.89 683.00 408.64
pga NC 40 0.9235 0.0729 0 0 92.33 126.98 40.00 0.00
pga NC 255 0.9917 0.0161 95 0 291.53 135.13 255.00 0.00
pga NC var 0.9647 0.0748 75 0 284.40 157.54 1788.72 604.25
pga NC varpp 0.9588 0.0679 3 0 140.73 139.59 751.08 445.44

Best fitness and length averaged over last 100 generations, average run time
Algorithm Best fitness (std) Length (std) Time in secs. (std)
ga 0.9931 0.0096 40.00 0.00 5.22 0.44
pga 40 0.9150 0.0789 40.00 0.00 3.11 0.31
pga 255 0.9810 0.0303 255.00 0.00 8.21 0.54
pga var 0.9557 0.0767 1772.01 651.76 49.38 17.91
pga varpp 0.9492 0.0673 1465.12 540.93 41.12 13.58
pga NC 40 0.9219 0.0725 40.00 0.00 2.70 0.46
pga NC 255 0.9835 0.0215 255.00 0.00 7.10 0.30
pga NC var 0.9576 0.0759 1812.89 605.12 46.66 15.05
pga NC varpp 0.9489 0.0682 1478.74 571.24 37.25 12.75
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Table B.5: Results of PGA2 and GA on the symbolic regression problem. Average and
standard deviation (std) over 100 runs.

Best of run (BOR) fitness, hits, generation found, and genome length
Algorithm BOR fitness (std) Hit:≥ 0.99 ≥ 1.0 Gen Found (std) Length (std)
ga 0.9957 0.0042 90 0 79.02 117.05 40.00 0.00
pga 40 0.9931 0.0080 83 0 80.89 118.92 40.00 0.00
pga 255 0.9991 0.0007 100 0 315.01 125.00 255.00 0.00
pga var 0.9948 0.0083 89 0 318.42 148.17 1639.59 747.33
pga varpp 0.9962 0.0027 99 0 201.40 152.27 129.68 48.18
pga NC 40 0.9923 0.0084 79 0 63.73 106.20 40.00 0.00
pga NC 255 0.9991 0.0007 100 0 309.24 123.88 255.00 0.00
pga NC var 0.9953 0.0074 89 0 379.85 135.64 1748.98 654.69
pga NC varpp 0.9955 0.0034 94 0 228.21 149.07 145.83 59.39

Best fitness and length averaged over last 100 generations, average run time
Algorithm Best fitness (std) Length (std) Time in secs. (std)
ga 0.9957 0.0043 40.00 0.00 79.73 0.66
pga 40 0.9928 0.0080 40.00 0.00 20.69 0.46
pga 255 0.9982 0.0010 255.00 0.00 24.59 0.49
pga var 0.9937 0.0089 1717.67 714.50 58.86 16.07
pga varpp 0.9958 0.0029 160.93 115.84 24.58 2.54
pga NC 40 0.9917 0.0086 40.00 0.00 21.55 0.50
pga NC 255 0.9986 0.0009 255.00 0.00 25.80 0.55
pga NC var 0.9940 0.0086 1777.57 651.43 68.21 14.36
pga NC varpp 0.9952 0.0035 161.84 99.46 25.75 2.73
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Table B.6: Results of PGA3 and GA on the symbolic regression problem. Average and
standard deviation (std) over 100 runs.

Best of run (BOR) fitness, hits, generation found, and genome length
Algorithm BOR fitness (std) Hit:≥ 0.99 ≥ 1.0 Gen Found (std) Length (std)
ga 0.9957 0.0042 90 0 79.02 117.05 40.00 0.00
pga 40 0.9882 0.0095 53 0 62.71 86.50 40.00 0.00
pga 255 0.9983 0.0010 100 0 302.51 121.56 255.00 0.00
pga var 0.9946 0.0086 89 0 338.00 143.22 1702.14 705.63
pga varpp 0.9924 0.0081 89 0 246.62 147.62 205.31 103.75
pga NC 40 0.9862 0.0103 46 0 53.90 84.72 40.00 0.00
pga NC 255 0.9978 0.0027 98 0 329.15 121.50 255.00 0.00
pga NC var 0.9947 0.0082 90 0 331.08 141.86 1814.50 578.26
pga NC varpp 0.9927 0.0076 92 0 243.25 161.72 194.08 100.55

Best fitness and length averaged over last 100 generations, average run time
Algorithm Best fitness (std) Length (std) Time in secs. (std)
ga 0.9957 0.0043 40.00 0.00 79.73 0.66
pga 40 0.9872 0.0099 40.00 0.00 21.69 0.51
pga 255 0.9959 0.0016 255.00 0.00 25.58 0.50
pga var 0.9927 0.0097 1743.23 691.39 60.97 15.67
pga varpp 0.9883 0.0085 555.23 370.05 33.30 7.51
pga NC 40 0.9850 0.0110 40.00 0.00 30.70 0.52
pga NC 255 0.9964 0.0029 255.00 0.00 35.50 0.56
pga NC var 0.9926 0.0092 1854.02 549.69 70.15 11.85
pga NC varpp 0.9895 0.0084 480.38 392.39 41.61 8.06

Table B.7: PGA and GA on NASA ALSS simulatior, optimizing mission productivity with
strategy Γ1. Average and standard deviation (std) over 40 runs.

Best of run (BOR) fitness, generation found, genome length
Algorithm BOR fitness (std) Generation Found (std) Genome Length (std)
ga 25 25508.7386 724.1122 124.58 142.51 25.00 0.00
pga 25 20535.9791 1486.5627 60.40 38.10 25.00 0.00
pga 40 25421.7159 879.9272 105.60 62.91 40.00 0.00
pga var (max 80) 29748.5530 1290.3420 282.80 112.35 70.33 8.22

Best fitness averaged over last 100 generations, average run time
Algorithm Best fitness (std) Time in secs. (std)
ga 25 25402.9143 827.1380 999.83 87.49
pga 25 20506.9776 1569.8013 686.90 106.12
pga 40 25421.7162 879.9273 1169.75 156.23
pga var (max 80) 29733.8987 1292.8265 1565.38 897.29
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Table B.8: PGA and GA on NASA ALSS simulatior, optimizing mission productivity with
strategy Γ3. Average and standard deviation (std) over 40 runs.

Best of run (BOR) fitness, generation found, genome length
Algorithm BOR fitness (std) Generation Found (std) Genome Length (std)
ga 75 30731.4456 2084.0995 323.85 133.39 75.00 0.00
pga 75 34144.1525 2841.0517 341.58 138.67 75.00 0.00
pga 120 34931.2785 1275.5678 425.00 87.54 120.00 0.00
pga var (max 240) 34894.6559 1432.4015 419.35 71.63 187.05 31.95

Best fitness averaged over last 100 generations, average run time
Algorithm Best fitness (std) Time in secs. (std)
ga 75 30643.0013 2110.7448 1385.30 157.51
pga 75 34042.6220 2820.7889 1580.78 216.23
pga 120 34649.3913 1226.5390 1545.05 120.76
pga var (max 240) 34570.0414 1320.3384 1397.20 114.65

Table B.9: PGA and GA on NASA ALSS simulatior, optimizing mission productivity with
strategy Γ5. Average and standard deviation (std) over 40 runs.

Best of run (BOR) fitness, generation found, genome length
Algorithm BOR fitness (std) Generation Found (std) Genome Length (std)
ga 125 33484.7394 2009.4459 376.53 99.50 125.00 0.00
pga 125 37026.3127 1026.1128 445.13 78.06 125.00 0.00
pga 200 38251.8807 674.3510 457.15 43.18 200.00 0.00
pga var (max 400) 35931.0829 1857.5803 463.33 47.22 295.23 81.18

Best fitness averaged over last 100 generations, average run time
Algorithm Best fitness (std) Time in secs. (std)
ga 125 33305.0258 2021.9056 1748.33 201.09
pga 125 36803.4582 1049.3608 1906.00 175.88
pga 200 37788.2305 663.9422 1793.80 129.87
pga var (max 400) 35356.9361 1945.3999 1153.45 257.53
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Table B.10: PGA and GA on NASA ALSS simulatior, optimizing mission productivity with
strategy Γ7. Average and standard deviation (std) over 40 runs.

Best of run (BOR) fitness, generation found, genome length
Algorithm BOR fitness (std) Generation Found (std) Genome Length (std)
ga 175 34403.5451 1110.4432 428.05 65.50 175.00 0.00
pga 175 38118.8467 1031.2142 449.65 45.47 175.00 0.00
pga 280 37965.6329 1015.8243 481.35 26.08 280.00 0.00
pga var (max 560) 36842.7540 1577.1880 476.20 30.03 368.63 108.85

Best fitness averaged over last 100 generations, average run time
Algorithm Best fitness (std) Time in secs. (std)
ga 175 34108.4007 1178.1366 1431.53 79.30
pga 175 37838.2114 1254.3451 1595.63 177.61
pga 280 37503.1610 1088.9034 1475.63 119.07
pga var (max 560) 36350.8311 1702.5978 1280.13 155.76

Table B.11: PGA and GA on NASA ALSS simulatior, optimizing mission productivity with
strategy Γ9. Average and standard deviation (std) over 40 runs.

Best of run (BOR) fitness, generation found, genome length
Algorithm BOR fitness (std) Generation Found (std) Genome Length (std)
ga 255 34589.8542 1349.3034 421.88 74.25 225.00 0.00
pga 255 38016.9042 1665.4648 447.55 76.41 225.00 0.00
pga 360 37644.3455 1219.9812 486.70 15.76 360.00 0.00
pga var (max 720) 34995.9718 1521.0330 474.33 24.92 564.88 110.77

Best fitness averaged over last 100 generations, average run time
Algorithm Best fitness (std) Time in secs. (std)
ga 255 34411.3304 1301.7954 1357.38 100.87
pga 255 37508.3537 1637.3417 1416.58 132.29
pga 360 37119.4869 1248.0095 1349.40 108.96
pga var (max 720) 34331.8560 1595.7883 1147.18 114.50
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Table B.12: PGA and GA on NASA ALSS simulatior, optimizing mision duration with
strategy Γ1. Average and standard deviation (std) over 40 runs.

Best of run (BOR) fitness, generation found, genome length
Algorithm BOR fitness (std) Generation Found (std) Genome Length (std)
ga 25 8589.3250 296.6670 146.65 132.49 25.00 0.00
pga 25 6654.1250 648.4009 100.28 87.49 25.00 0.00
pga 40 9557.0000 0.0000 86.98 43.51 40.00 0.00
pga var (max 80) 10030.8500 197.0098 321.85 131.29 72.70 5.15

Best fitness averaged over last 100 generations, average run time
Algorithm Best fitness (std) Time in secs. (std)
ga 25 8574.6000 306.9484 1395.95 66.81
pga 25 6654.1250 648.4009 938.78 151.35
pga 40 9557.0000 0.0000 2177.08 18.77
pga var (max 80) 10019.5000 188.6309 2141.55 66.57

Table B.13: PGA and GA on NASA ALSS simulatior, optimizing mision duration with
strategy Γ3. Average and standard deviation (std) over 40 runs.

Best of run (BOR) fitness, generation found, genome length
Algorithm BOR fitness (std) Generation Found (std) Genome Length (std)
ga 75 9122.3750 0.7742 213.73 127.05 75.00 0.00
pga 75 9153.1250 458.5895 265.15 116.78 75.00 0.00
pga 120 9197.4750 535.7199 200.40 169.00 120.00 0.00
pga var (max 240) 9072.1000 1.8369 85.30 102.33 191.80 58.27

Best fitness averaged over last 100 generations, average run time
Algorithm Best fitness (std) Time in secs. (std)
ga 75 9122.3750 0.7742 1682.75 38.86
pga 75 9152.8655 458.6336 1719.53 135.86
pga 120 9197.2133 535.7805 1724.35 43.55
pga var (max 240) 9071.6250 1.6747 1768.25 34.89
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Table B.14: PGA and GA on NASA ALSS simulatior, optimizing mision duration with
strategy Γ5. Average and standard deviation (std) over 40 runs.

Best of run (BOR) fitness, generation found, genome length
Algorithm BOR fitness (std) Generation Found (std) Genome Length (std)
ga 125 14757.1250 544.3968 256.63 153.35 125.00 0.00
pga 125 14348.2500 822.3704 171.23 123.08 125.00 0.00
pga 200 14643.9000 682.2123 226.20 144.76 200.00 0.00
pga var (max 400) 14993.5000 340.6499 173.38 107.43 260.33 95.21

Best fitness averaged over last 100 generations, average run time
Algorithm Best fitness (std) Time in secs. (std)
ga 125 14744.6583 555.0273 2932.40 81.57
pga 125 14348.0198 822.1618 2875.43 147.45
pga 200 14627.2498 704.4844 2891.08 142.04
pga var (max 400) 14988.9743 362.1876 2878.73 99.67

Table B.15: PGA and GA on NASA ALSS simulatior, optimizing mision duration with
strategy Γ7. Average and standard deviation (std) over 40 runs.

Best of run (BOR) fitness, generation found, genome length
Algorithm BOR fitness (std) Generation Found (std) Genome Length (std)
ga 175 15344.1000 955.2187 142.90 114.95 175.00 0.00
pga 175 14821.5500 1281.8471 182.63 140.90 175.00 0.00
pga 280 14430.6250 1294.9936 284.65 148.43 280.00 0.00
pga var (max 560) 15786.0500 975.8598 174.78 65.15 409.28 93.03

Best fitness averaged over last 100 generations, average run time
Algorithm Best fitness (std) Time in secs. (std)
ga 175 15343.5385 956.3084 3070.53 186.09
pga 175 14803.1260 1298.7209 2982.90 294.28
pga 280 14416.7418 1303.5396 2815.23 273.15
pga var (max 560) 15785.3905 977.8841 2965.13 196.32
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Table B.16: PGA and GA on NASA ALSS simulatior, optimizing mision duration with
strategy Γ9. Average and standard deviation (std) over 40 runs.

Best of run (BOR) fitness, generation found, genome length
Algorithm BOR fitness (std) Generation Found (std) Genome Length (std)
ga 255 14847.7250 1041.0159 210.70 137.31 225.00 0.00
pga 255 15170.5250 1283.4939 206.58 139.78 225.00 0.00
pga 360 16012.2000 592.4544 165.20 56.25 360.00 0.00
pga var (max 720) 15568.9750 1099.4568 268.98 116.82 548.68 137.83

Best fitness averaged over last 100 generations, average run time
Algorithm Best fitness (std) Time in secs. (std)
ga 255 14843.4843 1044.3307 3115.23 221.50
pga 255 15165.8625 1289.7281 3170.23 346.42
pga 360 16010.8238 598.0638 3331.95 152.68
pga var (max 720) 15562.9788 1109.6910 3051.20 262.59
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Table B.17: PGA and GA on NASA ALSS simulatior, optimizing mision productivity and
duration with strategy Γ1. Average and standard deviation (std) over 40 runs.

Best of run (BOR) fitness, generation found, genome length
Algorithm BOR fitness (std) Generation Found (std) Genome Length (std)
ga 25 50625.7030 1876.3654 192.63 186.20 25.00 0.00
pga 25 40592.0659 781.0210 74.33 39.31 25.00 0.00
pga 40 57261.7518 0.0013 104.80 51.43 40.00 0.00
pga var (max 80) 59781.3850 2548.3053 211.68 111.72 65.28 13.27

Best fitness averaged over last 100 generations, average run time
Algorithm Best fitness (std) Time in secs. (std)
ga 25 50227.2588 2076.9028 1337.73 130.40
pga 25 40592.0660 781.0207 983.20 52.23
pga 40 57261.7520 0.0000 2129.55 74.91
pga var (max 80) 59413.7809 2922.5503 1986.23 216.90

Table B.18: PGA and GA on NASA ALSS simulatior, optimizing mision productivity and
duration with strategy Γ3. Average and standard deviation (std) over 40 runs.

Best of run (BOR) fitness, generation found, genome length
Algorithm BOR fitness (std) Generation Found (std) Genome Length (std)
ga 75 63713.7350 4314.5025 275.90 120.37 75.00 0.00
pga 75 69356.9502 3388.4249 262.53 139.01 75.00 0.00
pga 120 72641.8553 1731.0901 413.85 95.25 120.00 0.00
pga var (max 240) 72020.5877 3037.7582 373.35 115.62 184.85 46.12

Best fitness averaged over last 100 generations, average run time
Algorithm Best fitness (std) Time in secs. (std)
ga 75 63687.1519 4298.5406 1597.40 141.11
pga 75 69342.3989 3430.6253 1714.00 178.93
pga 120 72444.2433 1866.8026 1788.10 103.41
pga var (max 240) 71314.2104 3314.4401 1503.90 166.90
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Table B.19: PGA and GA on NASA ALSS simulatior, optimizing mision productivity and
duration with strategy Γ5. Average and standard deviation (std) over 40 runs.

Best of run (BOR) fitness, generation found, genome length
Algorithm BOR fitness (std) Generation Found (std) Genome Length (std)
ga 125 70490.1496 2772.1931 372.38 102.88 125.00 0.00
pga 125 75442.8339 1499.8686 385.88 115.63 125.00 0.00
pga 200 77296.5300 1409.9456 437.98 59.25 200.00 0.00
pga var (max 400) 75356.3262 3188.9325 436.58 70.43 264.53 90.64

Best fitness averaged over last 100 generations, average run time
Algorithm Best fitness (std) Time in secs. (std)
ga 125 70284.6355 2708.8702 1707.70 144.82
pga 125 75111.9216 1611.4810 1827.13 71.71
pga 200 76817.6350 1639.0860 1699.38 103.92
pga var (max 400) 74763.5389 3440.6151 1415.70 193.92

Table B.20: PGA and GA on NASA ALSS simulatior, optimizing mision productivity and
duration with strategy Γ7. Average and standard deviation (std) over 40 runs.

Best of run (BOR) fitness, generation found, genome length
Algorithm BOR fitness (std) Generation Found (std) Genome Length (std)
ga 175 72626.8411 3526.9798 328.03 110.77 175.00 0.00
pga 175 78331.2076 1798.1873 467.20 55.36 175.00 0.00
pga 280 77825.5538 1973.0107 472.43 38.23 280.00 0.00
pga var (max 560) 75276.4758 2613.9920 479.35 44.15 407.13 100.06

Best fitness averaged over last 100 generations, average run time
Algorithm Best fitness (std) Time in secs. (std)
ga 175 72415.3248 3605.7672 1533.33 190.51
pga 175 78019.0782 1840.7015 1592.85 100.70
pga 280 77286.0961 2069.4718 1404.23 141.19
pga var (max 560) 74222.7373 2734.9842 1236.35 138.20
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Table B.21: PGA and GA on NASA ALSS simulatior, optimizing mision productivity and
duration with strategy Γ9. Average and standard deviation (std) over 40 runs.

Best of run (BOR) fitness, generation found, genome length
Algorithm BOR fitness (std) Generation Found (std) Genome Length (std)
ga 255 72869.8208 1878.8131 404.88 90.70 225.00 0.00
pga 255 78860.5968 1695.8682 474.85 29.99 225.00 0.00
pga 360 77269.8081 2272.8554 470.58 25.69 360.00 0.00
pga var (max 720) 74203.5236 2380.7273 460.00 34.59 529.63 119.87

Best fitness averaged over last 100 generations, average run time
Algorithm Best fitness (std) Time in secs. (std)
ga 255 72414.4872 1816.4348 1738.28 160.75
pga 255 78319.7190 1666.1816 1805.83 84.50
pga 360 76650.9385 2227.2262 1614.10 44.38
pga var (max 720) 73031.9897 2522.6191 1258.20 149.77
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Figure B.1: Fitness data (best, average, worst) over 100 runs for the proportional GA on
the resource allocation domain using randomly generated allocations
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Figure B.2: Genome length data (longest, average, shortest) over 100 runs for the propor-
tional GA on the resource allocation domain using randomly generated allocations
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Figure B.3: Best fitness data for the resource allocation domain using randomly generated
allocations: (top) close look at the best fitness per generation over 100 runs, comparing:
GA, PGA-255, PGA-var, PGA-255-nc, and PGA-var-nc; (bottom) absolute and average
best fitness over 100 runs for algorithms 1 to 9: GA, PGA-255-nc, PGA-40-nc, PGA-var-nc,
PGA-var-nc-parsimony, PGA-255, PGA-40, PGA-var, PGA-var-parsimony
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Figure B.4: Fitness data (best, average, worst) over 100 runs for the proportional GA on
the resource allocation domain using fixed test allocation values: 1:2:4:2:1
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Figure B.5: Genome length data (longest, average, shortest) over 100 runs for the propor-
tional GA on the resource allocation domain using fixed test allocation values: 1:2:4:2:1
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Figure B.6: Best fitness data for the resource allocation domain using fixed test allocation
values: 1:2:4:2:1: (top) close look at the best fitness per generation over 100 runs, comparing:
GA, PGA-255, PGA-var, PGA-255-nc, and PGA-var-nc; (bottom) absolute and average
best fitness over 100 runs for algorithms 1 to 9: GA, PGA-255-nc, PGA-40-nc, PGA-var-nc,
PGA-var-nc-parsimony, PGA-255, PGA-40, PGA-var, PGA-var-parsimony
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Figure B.7: Fitness data (best, average, worst) over 100 runs for the proportional GA on
the number matching domain using PGA2
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Figure B.8: Genome length data (longest, average, shortest) over 100 runs for the propor-
tional GA on the number matching domain using PGA2
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Figure B.9: Best fitness data for the number matching domain using PGA2: (top) close
look at the best fitness per generation over 100 runs, comparing: GA, PGA-255, PGA-var,
PGA-255-nc, and PGA-var-nc; (bottom) absolute and average best fitness over 100 runs
for algorithms 1 to 9: GA, PGA-40-nc, PGA-255-nc, PGA-var-nc-parsimony, PGA-var-nc,
PGA-40, PGA-255, PGA-var-parsimony, PGA-var
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Figure B.10: Fitness data (best, average, worst) over 100 runs for the proportional GA on
the number matching domain using PGA3
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Figure B.11: Genome length data (longest, average, shortest) over 100 runs for the propor-
tional GA on the number matching domain using PGA3
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Figure B.12: Best fitness data for the number matching domain using PGA3: (top) close
look at the best fitness per generation over 100 runs, comparing: GA, PGA-255, PGA-var,
PGA-255-nc, and PGA-var-nc; (bottom) absolute and average best fitness over 100 runs
for algorithms 1 to 9: GA, PGA-40-nc, PGA-255-nc, PGA-var-nc-parsimony, PGA-var-nc,
PGA-40, PGA-255, PGA-var-parsimony, PGA-var
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Figure B.13: Fitness data (best, average, worst) over 100 runs for the proportional GA on
the symbolic regression domain using PGA2
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Figure B.14: Genome length data (longest, average, shortest) over 100 runs for the propor-
tional GA on the symbolic regression domain using PGA2
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Figure B.15: Best fitness data for the symbolic regression domain using PGA2: (top) close
look at the best fitness per generation over 100 runs, comparing: GA, PGA-255, PGA-var,
PGA-255-nc, and PGA-var-nc; (bottom) absolute and average best fitness over 100 runs
for algorithms 1 to 9: GA, PGA-40-nc, PGA-255-nc, PGA-var-nc-parsimony, PGA-var-nc,
PGA-40, PGA-255, PGA-var-parsimony, PGA-var
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Figure B.16: Fitness data (best, average, worst) over 100 runs for the proportional GA on
the symbolic regression domain using PGA3
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Figure B.17: Genome length data (longest, average, shortest) over 100 runs for the propor-
tional GA on the symbolic regression domain using PGA3
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Figure B.18: Best fitness data for the symbolic regression domain using PGA3: (top) close
look at the best fitness per generation over 100 runs, comparing: GA, PGA-255, PGA-var,
PGA-255-nc, and PGA-var-nc; (bottom) absolute and average best fitness over 100 runs
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[BA99] Albert-László Barabási and Réka Albert. “Emergence of Scaling in Random
Networks.” Science, 286:509–512, 1999.

[Bag67] John D. Bagley. The behavior of adaptive systems which employ genetic and
correlation algorithms. PhD thesis, University of Michigan, 1967.

[Ban94] Wolfgang Banzhaf. “Genotype-Phenotype-Mapping and Neutral Variation – A
case study in Genetic Programming.” In Yuval Davidor, Hans-Paul Schwefel, and
Reinhard Männer, editors, Parallel Problem Solving from Nature III, pp. 322–332,
Jerusalem, 9-14 1994. Springer-Verlag.

[Bar98] Lionel Barnett. “Ruggedness and Neutrality – The NKp family of Fitness Land-
scapes.” In Christoph Adami, Richard K. Belew, Hiroaki Kitano, and Charles
Taylor, editors, Artificial Life VI: Proc. of the Sixth Int. Conf. on Artificial Life,
pp. 18–27, Cambridge, MA, 1998. The MIT Press.

[BCF99] Daniel J. Barta, Juan M. Castillo, and Russ E. Fortson. “The biomass production
system for the Bioregenerative Planetary Life Support Systems Test Complex:
Preliminary designs and considerations.” In Proc. 29th International Conference
on Environmental Systems, 1999. SAE Paper 1999-01-2188.

[BDE99] Wolfgang Banzhaf, Peter Dittrich, and Burkart Eller. “Selforganization in a
system of binary strings with topological interactions.” Physica D, 125:85–104,
1999.

153



[BDG98] Donald S. Burke, Kenneth A. De Jong, John J. Grefenstette, Connie Loggia
Ramsey, and Annie S. Wu. “Putting more genetics into genetic algorithms.”
Evolutionary Computation, 6(4):387–410, 1998.
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