

Student Papers
Evolutionary Computation Class
Spring 2007

Edited by
Ivan Garibay

Technical Report Number CS-TR-07-11
School of Electrical Engineering and Computer Science
University of Central Florida, November, 2007

Preface

 2

Papers

Focused Nash Memory for Coevolution

Kevin M. Kelly 3

Examining Cooperative Coevolution and Collaboration
Methods on Deceptive Landscapes

Phillip Verbancsics 10

Using Genetic Algorithms to Improve the Performance
of Logistic Regression Models

Anthony Vaiciulis 18

Reproducing and Evolution of Artificial Plants

Tommy McDaniel 25

Evolving a Simple Instinctive Behavior

Victor C. Hung 36

Learning invariant features in a set of similar fitness
landscapes for speedup

Gautham Anil 46

Optimal Design and Rehabilitation of Water
Distribution Networks using Evolutionary Computation
Algorithms: a Literature Review

Abhishek Das 54

Preface

These proceedings contain the student papers presented as final projects for the
Evolutionary Computation class (CAP 5512) that I taught at the University of Central
Florida the Spring of 2007. All papers in this collection present original research in the
area of Evolutionary Computation developed during the course of this class, except for
two. These are a literature review by Das and a reproduction of results by McDaniel.

More information about this class can be found at
http://ivan.research.ucf.edu/classes/CAP5512_Spring2007/index.htm

Ivan Garibay
Orlando, November 2007

CAP5512: Evolutionary Computation at UCF, Student Papers, Spring 2007

2

http://ivan.research.ucf.edu/classes/CAP5512_Spring2007/index.htm

Focused Nash Memory for Coevolution
Kevin M. Kelly

University of Central Florida

CAP 5512
Spring 2007

kkelly_1138@yahoo.com
ABSTRACT
Coevolutionary algorithms have various problems when used.
One of these known problems is that of forgetting. This is
especially true for intransitive problems. Sevan G. Ficici [1]
proposed a memory mechanism to solve this problem using the
game theory principle of Nash Equilibrium. This paper expands
on that work and looks at ways to focus the “Nash Memory”
mechanism as well as exploring it's uses with other game types.

1.INTRODUCTION
The use of game theory principles to assist coevolution has
become popular in recent years. It is seen as a way to help solve
some of the problems traditionally associated with coevolution
(specifically competitive coevolution.)

2.GAME THEORY IN COEVOLUTION
2.1 Problems in Coevolution

When people first started to look into competitive coevolution, it
was seen as something of a silver bullet to solve evolutionary
algorithms. One problem evolutionary algorithms has always had
was in defining the fitness function. Coevolution promised to
have an ever adapting fitness function that didn't need to be
defined specifically. By competing with the others in the
population (or another population), the system could generate
better and better fitness functions automatically and create
something of an arms race. Unfortunately, the early optimism
was replaced with frustration as common problems began to
develop.

One of these things is known as the “Red Queen Effect.” This
describes a situation where an individuals objective fitness
(fitness across the broader fitness landscape) could increase, but
in the ever changing fitness environment the individual finds itself
in, that doesn't actually improve it's chances for selection.

Another problem in coevolution is known as mediocre stable
states. This is a problem that occurs when there is a lack of
definition or driving force. It is often an unexpected state where
the individuals in the population get to a position where moving
from their causes problems, and so it becomes stable, but it is an
undesired state.

Cyclic dynamics is another typical coevolution problem. Cyclic
dynamics are a direct result of the dynamic nature of the fitness
landscape. At times, one strategy is good, but as that becomes
dominant, a different strategy becomes better. As that strategy
becomes dominant, the original strategy could become dominant
again causing a non-stop cycle of strategies with no ability to
search for better ones.

Related to cyclic dynamics is the principle of forgetting. As the
fitness landscape changes, traits that may be needed later are lost.
This could be from cyclic dynamics or drift. Drift is when a trait
does not distinguish it from a fitness perspective from other
individuals and therefore can stay or be removed without any
pressure from the system. The problem comes when this trait is
then needed later and needed to be completely relearned.

2.2 Game Theory

Game theory recently has become popular to address some of the
issues in coevolution because the same problems exist in game
theory. Two concepts in game theory that have been looked into
the most are Pareto Dominance and Nash Equilibrium [9].

Pareto Dominance defines the dominance of one strategy over all
others for some condition. The set of all undominated strategies
is referred to as the Pareto Front. This front gives the possible
trade-offs in strategies. All strategies on the Pareto Front are the
best given some condition.

This is the currently most popular mechanism in applying game
theory to competitive coevolution. Ficici [2] describes a method
of applying Pareto Dominance to coevolution. The population
evolves against the current dominant set rather than each other.
This gives a clear goal to the evolution as helps solve problems
such as the Red Queen effect as well as mediocre stable states. It
also has some effect on intransitive cycles, however, it doesn't
work all that well when those cycles exist. It is able to give an
indication of them.

Bucci [4] takes a similar approach in using a Pareto Hill Climbing
algorithm (similar approach to Pareto dominance as [2]). He runs
experiments using two versions of the Numbers Game (see below
for details). He uses the Intransitive Numbers Game as well as the
Focusing Game. the intransitive game (as the name implies) has
many intransitive cycles. The focusing game does not have
intransitive cycles but good competing strategies can be very
different (causing forgetting problems). He runs them using the
Pareto Hill Climber as well as an algorithm that doesn't use Pareto
dominance and shows that the algorithm not using Pareto has
significant problems where the Pareto algorithm performs very
well.

Bucci [6] formalizes Pareto coevolution for two player, two
outcome games. It is typical of most of the work done in game
theory for coevolution that they use two player, two outcome, and
even zero sum games. Zero sum simply means that the scores of
the players (two players in all of these cases) sum to zero. This is
usually done for two player games to mean one player wins, and

CAP5512: Evolutionary Computation at UCF, Student Papers, Spring 2007

3

the other loses. It often also allows each to score zero – meaning
a tie.

De Jong in [3] introduces the MaxSolve Algorithm. This paper is
often cited by others in the field. This again uses Pareto
Dominance as a solution concept. It also looks briefly at Nash
Equilibrium, but does not use it much. MaxSolve formalizes an
algorithm to use Pareto Equivalence Sets to solve simultaneous
goals. It uses the Compare on One Game to test this (see below
for details).

De Jong in [5] specifically looks at using Pareto Coevolution
solve intransitive games. He claims (as others do) that intransitive
games lead to cycling. His claim is that Pareto Coevolution can
transform an intransitive game into a transitive one. He tests this
using the Intransitive Numbers game.

Another game theory concept often referred to in Nash
Equilibrium. This is the concept that says that games can get into
a state where a change in strategy for either player would cause
their score to go down. This is seen as the optimal strategy for a
rational player. The problem with Nash Equilibrium is that for a
given game, there could be many Nash Equilibrium. This is
typically solved in the current research by choosing games with a
single Nash Equilibrium as well as using only two-player zero
sum games. For two-player zero sum games, all Nash
Equilibrium are the same total fitness. For certain cooperative
games (such as the Prisoner's Dilemma – which is not zero sum)
this is not the case.

Although various authors look briefly at Nash Equilibrium as a
solution concept, the only one that goes deeply into using it is
Ficici [1]. It is used there as the goal for a memory mechanism to
avoid forgetting and intransitive states. This paper looks more
deeply into that.

3. Numbers Game
The Numbers Game really a loosely related set of games that are
very good for looking into evolutionary strategies. A Number
Game is usually defined by each player playing an n-dimentinal
vector of integers. The specific game defines which strategy wins.

Numbers Games are popular in coevolution research because they
can be simply evolved and can be defined to create many of the
problems where research is desired. Three different numbers
games are described below that have been used in coevolution
research.

3.1 Intransitive Numbers Game

The Intransitive Numbers Game was first defined by Watson and
Pollack [7]. It was created to make intransitive cycles. An
intransitive cycle is where strategy A beats strategy B, B beats
strategy C, but C beats strategy A. The most obvious example of
this is the game of Rock – Paper – Scissors. Rock beats Scissors,
Scissors beat Paper, and Paper beats Rock.
For a vector of n dimensions, the winner of the intransitive
numbers game can be simply defined as the the highest value in
the dimension where the competing strategies are closest.
Ficici[1] also adds a value to it defining the minimum distance
away it will consider for closeness. This can allow it to be set up

so that a dimension will not be declared unless it is a certain value
different. The significance of this will be described more later.

3.2 Focussing Game

The Focussing Game is used by Bucci[4]. This defines a game
that creates asymmetric winning strategies. That is where two
equally good strategies could be very different. The Focussing
Game simply takes the highest of all dimensions and compares
those values.
For a vector of n dimensions, the winner of the focusing game is
the one with the highest dimension in any dimension. This causes
a focusing problem for coevolution because it works best with a
diverse population but can cause a population to focus to much on
one dimension.

3.3 Compare on One

The Compare on One game is used in De Jong[3]. It describes a
game similar to the Focussing game. Instead of allowing the
highest in any dimension to be compared though, it compares a
particular dimension based on the highest dimension of the test.
In this, the strategies that will do the best overall are the ones that
have a high value in all dimensions but if the tests are all in a
single dimension, a coevolution strategy could evolve only
strategies in that dimension again causing a focusing problem.

Table 1. Numbers Game Properies

Game Type Definition Property

Intransitive
Numbers Game

Highest in
closest

dimension
Intransitive sets

Focussing
Game

Highest in any
dimension

Asymmetric winning
strategies

Compare on
One

Highest in the
dimension of the

test set

Causes focus
problems

4. Nash Memory
Ficici[1] the uses the concept of Nash Equilibrium as a structure
for memory management to improve the process of coevolution.
He attempts to solve the problems of forgetting and cycling in
coevolution by adding a solution concept and memory
mechanism. He more or less succeeds but with some practical
problems.

Memory is needed in coevolution to help solve the problem of
forgetting in these algorithms. That is while searching the
evolutionary space, traits that were useful at one point are lost but
are needed later. This can happen because for a given
environment, that trait is not currently useful or because it simply
migrates with similarly useful traits. Because the search space
may be volatile (such as in a game) the heuristic that determines if
it is good or not needs to adjust as well. This is the case in such
things as rock-paper-scissors where the best strategy is dependent
on what your opponent plays.

CAP5512: Evolutionary Computation at UCF, Student Papers, Spring 2007

4

Nash Equilibrium helps to deal with this volatile environment.
Nash Equilibrium says that there is a strategy that is the best
strategy to play against itself. That strategy could be a mixed
strategy meaning that there is a set of strategies that are played at
some probability. For example, in rock-papers-scissors, rock,
paper, and scissors are useful at equal probabilities. Therefore the
mixed strategy is to play each one at that probability. Each of
those pure strategies (i.e. rock, paper, and scissors) are said to
support the mixed strategy. If a strategy is a Nash Equilibrium, it
also beats all pure strategies. This gives a good goal state as well
as allows the goal state to encode the possibility to play multiple
strategies because of different environments. It should be pointed
out that this only works when all of the pure strategies can be
defined and finite.

One problem seen in the experiments this paper were that the
Nash Approximation grows significantly over time. It creates
such a complex system that it can cause serious practical
problems. This problem will be looked at in more detail as well
as a possible solution to the problem – Focused Nash Memory.

4.1 Description

The concept behind Nash Memory is to use two sets of strategy to
maintain the memory and a heuristic mechanism (in this case an
evolutionary algorithm) to produce a set of strategies that can beat
the currently accepted bests strategy.
This uses the property of Nash Equilibrium that for zero-sum
games, the Nash Equilibrium is secure (i.e. can't be beat) against
all non-Nash strategies. It also uses the property that a Nash
strategy can be defined as a mixed strategy.
A pure strategy is as a single strategy of the game. In this case
that would be a single vector. A mixed strategy is a set of pure
strategies and a value from 0 to 1 for each of those strategies
defining the ratio for use of that strategy.
The memory of Nash Memory consists of the current best Nash
Approximation and a Memory set of all pure strategies that were
part of the the Nash Approximation at some time.
A set of all winners of the heuristic set (pure strategies that score
greater than zero against the current Nash Approximation) is
delivered by evolutionary algorithm. Those winners, the current
Nash Approximation, and all of the strategies in Memory are put
into a game matrix and solved with Linear Programming. The
linear programming used is described below. This provides back
a set of strategies supporting the new Nash Approximation and
the ratios for that mixed set. All of the strategies that were in the
Nash Approximation (or already in memory) but no longer are,
are added to the memory set for future use.
This memory mechanism allows the system to bring back from the
dead strategies that were once considered good. It breaks
intransitive cycles by allowing all strategies in the cycle to be
included in the Nash Approximation and as better strategies are
found, those can get replaced. It should be noted that a pure set is
simply a special mixed set which only has a single strategy whose
use value is 1.0.

4.2 Linear Programming (SIMPLEX)

The Linear Programming used is known as the SIMPLEX
algorithm[8]. SIMPLEX takes a game defined as a payoff matrix
(i.e. for each strategy the matrix defines it's score against each
other strategy). A row is added to the end of the matrix, known as
the objective entries, representing the percent played for each of
the row player's strategies (initialized to -1) and a final column
representing the percent played for the column player's strategies
(initialized to 1). It also then adds a corner value which
represents the maximum value of the function. For games
solving, this should eventually approach one.
The pseudo-code to the simplex algorithm is as follows:

1. Are any negative values in the objective entries
1. no – solution found

2. Select a negative objective entry
3. In the column above the selection, select the row with a

value that minimizes the ratio (final column value) /
(row value) where row value != zero (known as the ө-
ratio.)

4. Pivot the table at that selected row and column to obtain
the new tableau. (modifies all values, making the
objective entry non-negative)

This algorithm finishes with a set of pivoted algorithms and
values for each of those algorithms. If the algorithms were not
pivoted, or their value is ~0 then it is considered “not-used” for
purposes of Nash Memory. The percent values used are treated as
the values for the mixed sets.

5.Experimentation Tool and Software Design
To conduct the experiments for this project, a test tool was
developed. This tool has a GUI interface and was developed
using Object Oriented techniques to allow easy experimentation
and extension. One of the goals for this was to allow easy
addition of different types of games and evolutionary algorithm
techniques.

When developing the experimentation tool, it was clear that
SIMPLEX does not deal well with very small or very large values.
That is to say, the mathematics of it work fine, but practically
speaking it starts to fail. The precision of the double values used
in implementation are so great that values that should be 0 (and
therefore ignored at certain parts of the algorithm) are instead
used and create equally large numbers in the rotation. It was
therefore necessary to stop the calculations ar a certain number of
significant digits.

6. Experiments
The first experiments done were to test the ability of Nash
Memory as described by Ficici[1]. The system was run using the
Intransitive Numbers Game with 2-dimensional vectors. The
values of each dimension were from 0-100. They were
represented as a 200 bit binary string with the value of the first
dimension being the sum of bits 0-99 and the value of the second
dimension being the sum of bits 100-199. It was run in epochs of
30 generations each. At the end of each epoch, the best value
only was taken and compared to the current Nash Approximation.
If it dominated the Nash Approximation (i.e. it at least tied every
pure strategy in Nash and beat at least one of them) then that

CAP5512: Evolutionary Computation at UCF, Student Papers, Spring 2007

5

strategy became the new Nash Approximation (with mixed value
of 1.0) and the entire previous Nash Approximation was added to
Memory. If the best strategy at the end of the epoch scored less
than 0.0, the Nash Approximation was not updated. Otherwise,
SIMPLEX was run against the best strategy, the current Nash
Approximation, and the Memory. All used strategies with a use
percent greater than zero become the new Nash Approximation,
and all strategies previously in Nash or Memory that were not
used were put into Memory.
The GA used only mutation (no crossover) with a per-bit mutation
rate of 0.01. It used Elitism of 10 and Tournament Selection
(tournament size of 2).
The results obtained were not quite as clean as those presented in
[1], but did show the same trends. Figure 1 show the mean over
20 runs of the best scores against the Nash Approximation at the
end of each epoch. It shows, like Ficici[1] did that early on, it
was easy to obtain a good score against The approximation, but as
the approximation became better, it was more difficult to obtain a
good score against it.

What is not completely clear is whether it is the memory
mechanism that causes this, or if it is just a lack of ability of the
GA. Although it becomes more difficult to find a good score
against the Nash Approximation, the approximatin is not really
very close to the actual Nash value of the game (100, 100). The
mixed set is typically supported at the end with strategies such as
(70, 48) and (69, 72).
Figure 2 shows the mean of the average population score against
the Nash Approximation. This shows that although the GA can
produce an individual that can usually beat the Nash
Approximation (though just slightly) the Nash Approximation
does better against the averge.

One notable trend in the system is that as the system runs, the
number of strategies in support of the Nash Approximation gets
very large. Early on, it can actually drop back down to 1 as the
system finds a dominant strategy, but later, it becomes large. The
graph in Figure 3 shows the mean number of strategies in support
of the Nash Approximation at the end of each epoch.

The number continues to grow. This is actually much smaller
than what Ficici[1] had in his results. For a system with an actual
equilibrium of a single pure strategy, it should eventually get
smaller but doesn't. As an attempt to improve the GA and
hopefully get better Nash Approximations, the experiments were
run again but with different values for the GA,
For the second run, it was attempted to converge more quickly to
better obtain values that could beat the Nash Approximation. To
do this, the mutation rate was lowered to 0.001 and two point
crossover was added with a rate of 0.9. It still used a population

0 50 100 150 200 250 300

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Mean Best Score

Epoch

S
co

re

Figure 1: Mean best score against Nash Approximation at each
epoch

Figure 2: Average Population Score Against Nash
Approximation

Figure 3: Number of strategies in support of Nash
Approximation at each Epoch

0 50 100 150 200 250 300
0

2.5

5

7.5

10

12.5

15

17.5

20

22.5

25

27.5

30

Num Strategies Supporting Nash

Epoch

N
um

 S
tra

te
gi

es

0 50 100 150 200 250 300

-0.05
0

0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

0.45
0.5

0.55
0.6

0.65
0.7

Ave Score Against Nash

Epoch

Av
e

Sc
or

e

CAP5512: Evolutionary Computation at UCF, Student Papers, Spring 2007

6

of 100, number of generations per epoch of 30, and tournament
selection with size 2. The results of those are shown in Figure 4
and 5 below.

It is interesting that the GA much more quickly fails to produce
strategies that can beat the Nash Approximation. In fact, there
were some runs that didn't produce another strategy that could
win after the 70th or 80th epoch. The final strategies are still as
good or better than those produced with the weaker GA. For
instance, one run got a final Nash Approximation of two strategies
(71, 48) – played at 0.33 and (70, 79) – played at 0.66. That is
still not all that close to (100, 100) but is still fairly relatively
good.

With a stronger GA the average number of stragegies needed went
down significantly as well. Figure 6 shows the graph of number
of strategies at each epoch.

The number of strategies in support even appears to go down as
the system gets better and better approximations.

7.Focused Nash Memory
The number of strategies needed to support the nash
approximation takes a disturbing trend in the normal case. As
higher epochs are used it keeps greater and greater numbers of
strategies in support. In Ficici's original paper [1] he uses a
strategy to finally get a very close approximation of the actual
Nash Equilibrium of (100, 100) but it required 123 strategies in
support [1].

The growing number of strategies presents a fairly harsh problem
for practical use of this memory mechanism. With greater
numbers in the Nash Approximation, all other calculations get
greater.

The problem with the growing number of strategies in support of
the Nash Approximation has to do with the SIMPLEX algorithm
itself. SIMPLEX will keep strategies that have a very very low
actual play value. If the mixed values are studied on a standard
run with a lot of strategies in support, it is observed that there are
typically a few high use strategies and a significant number of
very low used strategies (see Table 2). These strategies contribute
very little to the actual score of the Nash Approximation.

Table 2. Example of a Nash Approximation

Strategy Use Strategy Use

(55, 35) 0.0002 (58, 42) 0.09909

(55, 59) 0.00145 (33, 62) 0.12329

(64, 36) 0.00497 (58, 53) 0.00439

Figure 4: Mean Best score against Nash over 20 runs (xover 0.9,
mut 0.001)

0 50 100 150 200 250 300
-0.3
-0.2
-0.1

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
Mean Best Score

Epoch

S
co

re

Figure 5: Average Population Score against Nash

0 50 100 150 200 250 300
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ave Score Against Nash

Epoch

Av
e

Sc
or

e

Figure 6: Strategies supporting nash from run 2 (xover
0.9, mut 0.001)

0 50 100 150 200 250 300

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Num Strategies Supporting Nash

Epoch

N
um

 S
tra

te
gi

es

CAP5512: Evolutionary Computation at UCF, Student Papers, Spring 2007

7

(52, 58) 0.00439 (52, 58) 0.0138

(54, 53) 0.03593 (61, 41) 0.01152

(65, 38) 0.00374 (71, 67) 0.18891

(63, 35) 0.01086 (73, 41) 0.03284

(46, 62) 0.02179 (57, 54) 0.01439

(62, 46) 0.07393 (56, 51) 0.03884

(56, 51) 0.03884 (62, 52) 0.02115

(52, 55) 0.01843 (61, 38) 0.0165

(65, 53) 0.02179 (51, 71) 0.11087

(53, 46) 0.01902 (45, 71) 0.06515

(27, 57) 0.03517 (67, 35) 0.01198

You can see in Table 2 that there are only a few strategies even
above 0.1. Looking at two of those strategies (71, 67) and (51,
71) they are clearly dominant over most of the other strategies in
the list. The question then becomes, what benefit does the system
gain by keeping these low use strategies to evolve against.

In order to focus the evolution of the Nash Approximation, a
Focus Value was added to the experiment. This value determines
the lowest use percent that would be allowed to support the Nash
Approximation. This was added to the end of the SIMPLEX
algorithm so that any strategy that wasn't at least that good, was
not allowed in the Nash Approximation. The experiments from
earlier were then run with only that change. The focus value
selected for this experiment was 0.05. The Figure 7 shows the
mean value of the best score obtained with that focus value on the
first experiment (as Figure 1 above).

What is seen is that the Nash Approximation has a much harder
time beating the best the heuristic can come up with. Like before,
this is only half of the story. It is unclear if this is because it the
memory is failing or the GA if just doing better. Observing the
approximations obtained look at least as good, if not better than
those obtained without the focus.

One thing that is clear is that the size of the Nash Approximation
is significantly lower. Figure 8 shows the number of strategies in
support at each epoch.

Similar results were found for the second experiment. The real
test though on whether or not this is an effective strategy is how
good the strategies is produces are. A final set of experiments
were run to actually play the approximations against each other at
the end of each epoch. The results are show in figure 9.

This experiment averaged the score per epoch over 20 runs. One
was run using the a focus value of 0.05 the other with no focus
value. The graph shows that the focused Nash memory starts off
slightly better but slowly gets worse at higher epochs. This is the
opposite of what was expected. It was thought that at higher
epochs when the non-focused version got large numbers of
strategies, it would become harder to develop strategies and
therefor suffer. It appear that the focused version gives the Nash a
fast start – ignoring the weaker strategies, but as the non-focused
one is able to take more strategies in, it makes up ground.

In any case, the differences in the strategies at any level are fairly
small. This demonstrates a trade-off that can be made. There are
inherent advantages to having fewer strategies in support
(performance, readability, etc) but that can be gained at a slight
cost in overall strategy effectivness.

Figure 7: Mean Best Score with Focus Value 0.05

0 50 100 150 200 250 300

0.25
0.3

0.35
0.4

0.45
0.5

0.55
0.6

0.65
0.7

0.75
0.8

0.85
0.9

0.95
1

Mean Best Score

Epoch

S
co

re

Figure 8: Average Number of strategies in support for
Focus Value 0.05

0 50 100 150 200 250 300

1

1.5
2

2.5

3
3.5

4

4.5
5

5.5

6
6.5

7

Num Strategies Supporting Nash

Epoch

N
um

 S
tra

te
gi

es

CAP5512: Evolutionary Computation at UCF, Student Papers, Spring 2007

8

8.Conclusions and Future Work
Overall the focused Nash Memory strategy did not have the effect
that was hoped for. It is possible that different focus values would
give better results. It was promising that the negative effect of
removing strategies did not cause significant loss of strategy
ability. The attempt taken to focus the Nash Memory and reduce
the unnecessary support strategies is still a valid mechanism.
Instead of the expected utility of increasing the ability to find
better strategies, it still has utility in improving performance, at
least to the point of justifying more research.

There are other possible ways to focus the ability of Nash
Memory that were not looked at here. Instead of taking a pure
focus percent of overall strategy use (i.e. 0.05 an better are kept),
it way work better to allow it to be a percent of the best strategy.
This would allow the focus value to change depending on other
strategies present. The purpose is to filter the states when there
are a couple really useful strategies and many non-useful
strategies. It way also work better (but with a loss of
performance) to put the winning strategies that pass through the
focus filter back through the SIMPLEX process again. This may
work better than the simple normalizing that was used in these

experiments. Some of the strategies taken were taken partially
because of their ability to beat the strategies that were later
removed.

Overall the Nash Memory mechanism helps coevolution avoid
some of the problem states. The ability to focus it is needed in
some manner to help reduce the bloat of strategies it faces, though
it may come at a decrease in overall strategy performance. This is
just one more trade off that can be weighed when choosing the
algorithm to use.

9.REFERENCES
[1] Ficici, S.G. and J.B. Pollack. A Game-Theoretic Memory

Mechanism for Coevolution. 2003 Genetic and
Evolutionary Computation Conference, 286-297. Springer,
2003.

[2] Ficici, S.G. and J.B. Pollack. A Game-Theoretic Approach to
the Simple Coevolutionary Algorithm. Parallel Problem
Solving from Nature VI, 467-476, Springer, 2000

[3] de Jong, Edwin. The MaxSolve Algorithm for Coevolution.
GECCO 2005, June 25-29.

[4] Bucci, A. Pollack, J.B. Focusing verses Intransitivity.
GECCO 2003, 250-261

[5] de Jong, E.D. Intransitivity in Coevolution, Lecture Notes in
Computer Science, 2004, 843-851, Spinger-Verlag.

[6] Bucci, Anthony, Jordan Pollack, A Mathematical Framework
for the Study of Coevolution. FOGA 7: Proceedings of the
Foundations of Genetic Algorithms Workshop, San
Francisco, CA, Mogam Kaugmann Publishers (2003) 221-
235.

[7] Watson, R.A, J.B. Pollack. Coevolutionary Dynamics in a
Minimal Substrate. GECCO 2001. 702-709. Morgan
Kaufmann, 2001.

[8] Brickman, Louse, Mathematical Introduction to Linear
Programming and Game Theory. 1989, Springer-Velag,
New York, NY.

[9] Dutta, Prajit K. Strategies and Game, Theory and Practice.
The MIT Press, Camridge Massachusetts, 1999.

Figure 9: Score of Focused (0.05) against non-focused
(Avg over 20 runs)

0 50 100 150 200 250 300
-0.2

-0.18
-0.15
-0.13

-0.1
-0.08
-0.05
-0.03

0
0.02
0.05
0.07

0.1
0.13
0.15

Score against non-focused

Epoch

Sc
or

e

CAP5512: Evolutionary Computation at UCF, Student Papers, Spring 2007

9

Examining Cooperative Co-evolution and Collaboration

Methods on Deceptive Landscapes
Phillip Verbancsics

University of Central Florida
School of EECS

Orlando, FL 32826
407-595-8873, 1

verb@cs.ucf.edu

ABSTRACT

Cooperative Co-evolution generates interest with its ability to

solve complex domains by breaking down the problem into

subcomponents. To be used to the best effect, we must

understand the performance of cooperative co-evolution under

varying circumstances. This paper aims to further the

understanding the capabilities of cooperative co-evolution by

expanding the understanding of the effect of collaboration

methods and extending the analysis to deceptive domains. We

show that cooperative co-evolution is fully capable of handling

deceptive domains through the variation of collaboration methods.

Categories and Subject Descriptors

I.2.m [Artificial Intelligence]: Evolutionary Computation

General Terms

Algorithms.

Keywords

cooperative co-evolution, collaboration methods, deceptive

landscapes, performance

1. Introduction

Understanding is the key for the proper use of any

technology. Evolutionary Algorithms (EAs), unaltered, provide

relatively powerful methods for problem solving and function

optimization. The dynamics underlying the basic EA model has

been studied since the days of their creation [5]. EAs also face

difficulties in the face of certain domains of fitness landscapes

that include deception or reduce the effectiveness of search down

to random [3]. Further research discovered ways to compensate

for these deficiencies, however

knowledge of the problem must first exist before a solution can be

crafted [4][11].

More recently, attention has shifted to further extensions of

the basic EA model, such as generative systems and co-

evolutionary systems. Co-evolutionary algorithms can be further

broken down into competitive and cooperative. Competitive

focuses on ratcheting up the arms race between individuals to

prevent stagnation and to provide better solutions under

conditions where the optimal may be unknown or unclear.

Cooperative focuses more on decomposing a problem into

subcomponents that then can be optimized separately and later

combined together to collaboratively find a solution [1].

In this paper, we are concerned with the use of cooperative

co-evolutionary algorithms (CCEAs) as static function optimizers,

as introduced in [10]. Similar to basic EAs, CCEAs have

dynamics that must be understood to be used effectively. The

unique features of these collaborative systems were explored in

[12]. These features include frequency of interaction and

collaboration schemes. In this paper, we will be examining the

effect of varying collaboration schemes. Further work has been

done in understanding the actual behavior and dynamics of

CCEAs in [6][7][8][9][12][13][14]. CCEAs also have their own

class of problematic dynamics, as explored in [2]. These involve

the devolvement to sub-optimal stable states from which escape is

difficult. The dynamics of CCEAs on these types of landscapes

were explored in [9].

This paper will further expand on the dynamical

understandings of the behavior of CCEAs on particular

landscapes, especially in reference to the variation of

collaboration methods. We will be varying two of three

collaboration parameters described in [12]. The three parameters

are number of collaborators, selection pressure on collaborators

and fitness assignment method. We will focus on the first two

and their effects on landscapes with deceptive features. Deceptive

landscapes have been shown to be difficult to overcome for EAs

[3]. We will examine the dynamics of CCEAs on deceptive

landscapes adapted from [9]. Landscapes with stables states

provide difficulty for CCEAs, but can be overcome with different

collaboration methods [6]. Adding deceptiveness, these

landscapes will provide insight into problems which are not just

difficult for CCEAs or EAs, but provides difficulty for both. We

will show that the variance of collaboration methods can provide

capability for overcoming deception, while balancing out the

capability of performance on non-deceptive landscapes. This

provides insight into parameter settings that can be used if the

CCEA user is unsure whether their landscape contains deceptive

features or not.

CAP5512: Evolutionary Computation at UCF, Student Papers, Spring 2007

10

2. Experimental Setup

2.1 Algorithm

We use a two population CCEA setup to evolve solutions to

two parameters in a fitness equation. The basic algorithm first

initializes the two populations with random real numbers. Using

sequential update timing [12], each population takes turns being

evaluated, switching with one turn intervals. During a

populations turn, it is evaluated using collaborators from the other

population, selected using tournament size 2 and mutated using a

Gaussian distribution. Additionally, collaborators are selected at

the end of the turn to be used with the other population. The

parameters used for all runs remained the same, with the

exception of number of collaborators, collaborator selection

pressure and deceptiveness (See Table 1).

Table 1. Parameters for CCEA

Parameter Value

Individuals per Population 10

Evaluations per Run 1000

Selection Rate 1.0

Selection Method Tournament, Size 2

Elitism 1

Mutation Rate 0.75

Gaussian Sigma 0.25

Number of Collaborators 1 through 5

Elitism for Collaborators 0 through 5

Fitness Assignment Method Optimistic

Deceptiveness 0.0; 0.9

Maximum Value 8.0

Following from [9] we decided to maintain a small

population for better effects of overcoming the problems inherent

in some fitness landscapes. The other settings were also

transferred over from [9] to better verify the functionality and

provide contrast to our extended results. For each experiment, we

varied the number of collaborators from 1 to 5, inclusive,

allowing us to collaborate with up to half the other population.

We varied the selection pressure on the collaborators from 0 to 5,

inclusive, where this indicates the number of “best” collaborators

that are used for the next collaboration and the rest are chosen

randomly with replacement. The final parameter, deceptiveness,

controls how deceptive the landscape is. This is further explored

when we look at the fitness landscapes. Sufficed to say, it ranges

from 0.0 to 1.0 and higher values indicate greater deception while

0.0 is no deception. We use a maximum individual value of 8.0,

minimum at 0.0, to provide continuity for results from [9]. Each

parameters combination is run a total of fifty times and the results

are tabulated from the statistics of the combined runs.

2.2 Fitness Landscapes

There are essentially four landscapes under examination.

The first two are landscapes that have been examined before in

[9]. These are the One Ridge and Two Ridge landscapes that

provided insight into the dynamics of CCEAs (See Figures 1 and

2).

Figure 1. One Ridge with No Deceptiveness, d= 0.0

Figure 2. Two Ridge with No Deceptiveness, d = 0.0

The second two are extensions of these basic landscapes

which are extended to include deceptive elements. These

CAP5512: Evolutionary Computation at UCF, Student Papers, Spring 2007

11

deceptive elements provide a secondary hill that leads the away

from the global optimum and towards a local optimum. In this

case, the One Ridge and Two Ridge have a local optimum at (0,0)

decrease in value until a delta point, then increase from that delta

point to a global maximum at point (m,m) (See Figures 3 and 4).

The equation that governs the one ridge landscapes is as follows:










−−−−−∗+∗

−∗+
=

),max(),min(2

),,max(),min(2
max),(1 ,

ymxmymxmmd

yxyxm
yx dm

In the above equation, m represents the maximum value x

and y can take on, while d represents the deceptiveness factor that

governs how much of the landscape is deceptive. When d is 1.0,

we have two equal length ridge areas, when it is 0.0, the deceptive

landscape is completely eliminated. Similarly, the equation for the

two ridge landscape is:




















































−−−+
+

+−
<−

−+−
+

−−
<−

−+−−
+

≥+





























−+
+

+
<

+
+

−
<

+−
+

=

otherwise
ymxmm

dm

nxm
ymif

ymxm
dm

nxm
ymif

ymxmm
dm

dmyxif

otherwise
yxm

m

nx
yif

yx
m

nx
yif

yxm
m

yx dm

2

)(3)(4
*

)
4

)(3
(

2
*

)
3

)(4
(

2

)(4)(3
*

)*(

2

34

)
4

3
(

2

)
3

4
(

2

43

),(2 ,

The two ridge function has similar functionality to the

previous one ridge function, with m being the maximum value of

x and y and d being the deceptiveness factor. Overall, the

deceptiveness factor controls the size of the deceptive area and the

local optima of the deceptive area (See Figures 3 and 4).

In [9], we saw that the dynamics of the CCEA on the One

Ridge and Two Ridge landscapes greatly differed. These

dynamics were further explored in [6][7] in reference to both the

variation of interaction frequency and collaboration methods. We

will see that, while the One Ridge and Two Ridge functions have

different effects in the collaboration method performance

especially in regards to One Best method, adding deception to

either landscape causes similar deception effects on the

collaboration methods. This paper examines landscapes with

higher deceptiveness to evaluate the performance of the CCEA

under harsher conditions.

Figure 3. One Ridge Function with Deceptiveness, d = 0.9

Figure 4. Two Ridge with Deceptiveness, d = 0.9

3. Results

3.1. One Ridge

It is important to establish a baseline for performance of

these landscapes before extending them into deceptive landscapes.

Without a clear understanding of the initial effects of the variation

of collaboration methods on non-deceptive landscapes, its more

difficult to interpret the exact effects that varying collaboration

methods has on deceptive landscapes. By contrasting with a

baseline, we are allowed insight into the dynamics that are unique

to the deceptive landscape. The effects of varying collaboration

methods are illustrated in figure 5.

CAP5512: Evolutionary Computation at UCF, Student Papers, Spring 2007

12

Collaboration Methods on One Ridge

10

11

12

13

14

15

16

1
R
an
do
m

2
R
an
do
m

3
R
an
do
m

4
R
an
do
m

5
R
an
do
m

1
Be
st

1
B
es
t +
 1
 R
an
do
m

1
B
es
t +
 2
 R
an
do
m

1
B
es
t +
 3
 R
an
do
m

1
B
es
t +
 4
 R
an
do
m

2
Be
st

2
B
es
t +
 1
 R
an
do
m

2
B
es
t +
 2
 R
an
do
m

2
B
es
t +
 3
 R
an
do
m

B
es
t 3

Be
st
 3
 +
 1
 R
an
do
m

Be
st
 3
 +
 2
 R
an
do
m

4
Be
st

4
B
es
t +
 1
 R
an
do
m

5
Be
stM

a
x
im
u
m
 F
it
n
e
s
s
 o
f
R
u
n

Average

Figure 5. Best of Run Performance for Different Collaboration Methods over fifty runs with a 95% confidence interval on One

Ridge function with no deception, Deceptiveness d = 0.0

Figure 5 shows the performance of different collaboration

schemes on the One Ridge function. These schemes vary from

one collaborator up to five collaborators and a selection pressure

on the collaborators from none being elite, meaning all random

selection, to complete elitism with all collaborators being selected

through elitism. With a maximum value of 8.0 for each

individual, the optimal value it 16.0 while the minima are 0.0.

The figure shows the average best of run from fifty runs and the

95% confidence interval around the average, showing what best

value an estimated 95% of runs can achieve. It is arranged by

selection pressure and then number of collaborators. Overall, the

best performer is (2 best + 2 random), while the worst is 1 best.

3.2. Deceptive One Ridge

The performance of the different collaboration methods on a

one ridge with deception, d, equal to 0.9 is shown in figure 6. It

is important to keep in mind that while adding deception to the

landscape, we also increase the fitness for a portion of the

landscape, leading to an increased area of higher fitness versus the

same landscape with no deception in it. The organization remains

the same as the One Ridge with no deception. The best

performer in this case is (1 best + 2 random), while the worst

performer remains 1 best. The best of run fitness is not the only

important statistic to examine in a deceptive landscape, but also

the number of times it is deceived to see how often the search

results in an goes in an path that does not lead to the optimum

(see Figure 7).

Deceptive One Ridge Maximum Fitness

10

11

12

13

14

15

16

1
R
an
do
m

2
R
an
do
m

3
R
an
do
m

4
R
an
do
m

5
R
an
do
m

1
B
es
t

1
B
es
t +
 1
 R
an
do
m

1
B
es
t +
 2
 R
an
do
m

1
B
es
t +
 3
 R
an
do
m

1
B
es
t +
 4
 R
an
do
m

2
B
es
t

2
B
es
t +
 1
 R
an
do
m

2
B
es
t +
 2
 R
an
do
m

2
B
es
t +
 3
 R
an
do
m

3
B
es
t

3
B
es
t +
 1
 R
an
do
m

3
B
es
t +
 2
 R
an
do
m

4
B
es
t

4
B
es
t +
 1
 R
an
do
m

5
B
es
t

M
a
x
im
u
m
 F
it
n
e
s
s
 o
v
e
r
R
u
n

Average

Figure 6. Best of Run Performance for Different Collaboration Methods over fifty runs with a 95% confidence interval on One

Ridge function with Deceptiveness, d = 0.9

CAP5512: Evolutionary Computation at UCF, Student Papers, Spring 2007

13

One Ridge Deception Rates

0

5

10

15

20

25

30

1
R
an
do
m

2
R
an
do
m

3
R
an
do
m

4
R
an
do
m

5
R
an
do
m

1
Be
st

1
Be
st
 +
 1
 R
an
do
m

1
Be
st
 +
 2
 R
an
do
m

1
Be
st
 +
 3
 R
an
do
m

1
Be
st
 +
 4
 R
an
do
m
2
Be
st

2
Be
st
 +
 1
 R
an
do
m

2
Be
st
 +
 2
 R
an
do
m

2
Be
st
 +
 3
 R
an
do
m
3
Be
st

3
Be
st
 +
 1
 R
an
do
m

3
Be
st
 +
 2
 R
an
do
m
4
Be
st

4
Be
st
 +
 1
 R
an
do
m
5
Be
st

N
u
m
b
e
r
o
f
D
e
c
e
p
ti
o
n
s

Population Trend

Best

Figure 7. The times deceived out of 50 runs for different collaboration methods on One Ridge with Deceptiveness, d, equal to 0.9.

Population trend indicates whether the final generation’s best collaboration was in the deceptive region while Best indicates the rate

at which the best of the entire run was within the deceptive region.

Figure 7 shows the deception rates over the fifty runs for the

One Ridge with deceptiveness, d, equal to 0.9. In it, we examine

the number of times, out of the fifty runs, that the best

collaboration in the populations in the final generation (e.g. best

individual in the population at the end) is on the deceptive area of

the landscape and also the number of times the best collaboration

(e.g. the global best) of the entire run was on the deceptive

landscape area. In both cases the best collaboration represents the

best individual, since we are using Optimistic fitness assignment.

These give us an idea of how well the collaboration methods are

handling the deception. The maximum number of deceptions

possible is all fifty of the runs, while the minimum is zero. We

can see both values peek at 1 best, while best reaches its minimum

at 4 random and the population trend has a minimum at 2 random.

3.3. Two Ridge

As seen in [6][9], the One Ridge function has unique

properties in behavior in relation to the behavior of the CCEA.

Figure 8 demonstrates the differences that were found. As in the

case of the One Ridge function, we see the average best of run

fitness with a 95% confidence interval for each of the

collaboration methods being looked at. The best performing

collaboration method in this case is the 1 best, while the worst

performing is the 5 random collaboration method.

Collaboration Methods on Two Ridge

15

15.2

15.4

15.6

15.8

16

1
R
an
do
m

2
R
an
do
m

3
R
an
do
m

4
R
an
do
m

5
R
an
do
m

1
Be
st

1
Be
st
 +
 1
 R
an
do
m

1
Be
st
 +
 2
 R
an
do
m

1
Be
st
 +
 3
 R
an
do
m

1
Be
st
 +
 4
 R
an
do
m
2
Be
st

2
Be
st
 +
 1
 R
an
do
m

2
Be
st
 +
 2
 R
an
do
m

2
Be
st
 +
 3
 R
an
do
m
Be
st
 3

Be
st
 3
 +
 1
 R
an
do
m

Be
st
 3
 +
 2
 R
an
do
m
4
Be
st

4
Be
st
 +
 1
 R
an
do
m
5
Be
stM

a
x
im
u
m
 F
it
n
e
s
s
 o
f
R
u
n

Average

Figure 8. Best of Run Performance for Different Collaboration Methods over fifty runs with a 95% confidence interval on Two

Ridge function with no deception, Deceptiveness d = 0.0

CAP5512: Evolutionary Computation at UCF, Student Papers, Spring 2007

14

Deceptive Two Ridge Maximum Fitness

15

15.2

15.4

15.6

15.8

16

1
Ra
nd
om

2
Ra
nd
om

3
Ra
nd
om

4
Ra
nd
om

5
Ra
nd
om

1
Be
st

1
Be
st
 +
 1
 R
an
do
m

1
Be
st
 +
 2
 R
an
do
m

1
Be
st
 +
 3
 R
an
do
m

1
Be
st
 +
 4
 R
an
do
m
2
Be
st

2
Be
st
 +
 1
 R
an
do
m

2
Be
st
 +
 2
 R
an
do
m

2
Be
st
 +
 3
 R
an
do
m
3
Be
st

3
Be
st
 +
 1
 R
an
do
m

3
Be
st
 +
 2
 R
an
do
m
4
Be
st

4
Be
st
 +
 1
 R
an
do
m
5
Be
st

M
a
x
im
u
m
 F
it
n
e
s
s
 o
v
e
r
R
u
n

Average

Figure 9. Best of Run Performance for Different Collaboration Methods over fifty runs with a 95% confidence interval on Two

Ridge function with Deceptiveness, d = 0.9

3.4 Deceptive Two Ridge

Figure 9 shows the best of run fitness metrics for the

deceptive Two Ridge landscape, with the deceptiveness parameter

set to 0.9. In this instance, the best collaboration method ended

up being the (3 Best + 1 Random), while the worst performer was

4 Random. There is also a greater similarity between the different

collaboration methods. This is a change from the non-deceptive

Two Ridge function, in which the One Best was the best solution

and the various collaboration methods showed a significant

difference from each other. In figure 10, we can see that there are

several collaboration methods that are equivalent in ability to

avoid deception. These include (3 best + 1 random), (2 Best + 3

Random) and (1 Best + 4 Random). Additionally, the 5 Random

collaborators method achieves very low best of run deception.

The worst performer in this case is the One Best collaboration

method. This parallels the result in the deceptive One Ridge

function, in which we saw that the One Best collaboration method

was the worst.

Two Ridge Deception Rates

0

5

10

15

20

25

30

1
Ra
nd
om

2
Ra
nd
om

3
Ra
nd
om

4
Ra
nd
om

5
Ra
nd
om

1
Be
st

1
Be
st
 +
 1
 R
an
do
m

1
Be
st
 +
 2
 R
an
do
m

1
Be
st
 +
 3
 R
an
do
m

1
Be
st
 +
 4
 R
an
do
m
2
Be
st

2
Be
st
 +
 1
 R
an
do
m

2
Be
st
 +
 2
 R
an
do
m

2
Be
st
 +
 3
 R
an
do
m
3
Be
st

3
Be
st
 +
 1
 R
an
do
m

3
Be
st
 +
 2
 R
an
do
m
4
Be
st

4
Be
st
 +
 1
 R
an
do
m
5
Be
stN

u
m
b
e
r
o
f
D
e
c
e
p
ti
o
n
s

Population Trend

Best

Figure 10. The deception rates for different collaboration methods on Two Ridge with Deceptiveness, d, equal to 0.9. Population

trend indicates whether the final generation’s best collaboration was in the deceptive region while Best indicates the rate at which

the best of the entire run was within the deceptive region

CAP5512: Evolutionary Computation at UCF, Student Papers, Spring 2007

15

4. Discussion

4.1 Non-deceptive Landscapes

Examining the results from the non-deceptive landscapes, we

can see that they confirm the results found in [6]. We can also see

some patterns within the individual variations of the parameters.

In the case of the One Ridge, we can see that just one collaborator

is insufficient for good optimization performance. Both the One

Best collaborator and One Random collaborator methods perform

worse than all other methods included. This specifically is an

artifact of contradictory cross-population epistasis of the One

Ridge landscape [6][9]. In Figure 5, we can see that by just

increasing the number of collaborators, whether they are random

or best collaborators, improves the performance of the

optimization. The other trend to note in One Ridge collaboration

performances is that pure elitism in collaboration methods also

hinders the performance. Even the addition of a single random

collaborator increases the ability of the algorithm to deal with the

One Ridge landscape. Collaboration techniques with some

elitism, those with some number of best collaborators, and some

number of random collaborators give us approximately equal

good performance.

Moving on to the Two Ridge landscape, with figure 8 we can

see a reversal of fortunes for the One Best collaboration method.

The One Best method now has exceedingly high performance

versus all other collaboration methods. However, all

collaboration methods perform very well on this landscape. They

are all capable of achieving the maximum value of 16.0, while not

going lower than 15.0 in general. Even in this narrow range, there

is variation that shows us differing performance capabilities of the

collaboration methods. In this landscape, we can see that

increasing the number of collaborators actually decreases the

performance of the algorithm on the landscape, the opposite of

what we saw in the One Ridge landscape. Further, the addition of

random collaborators sometimes helps and sometimes hurts, but

overall any collaboration method outside One Best and One

Random gives worse performance.

Already we can see that the collaboration method chosen

biases our algorithm towards certain solutions on the landscape

and to overcome obstacles in unknown landscapes, compromise

has to be made, following from [15]. Collaboration methods that

are not the ideal for either landscape, but still perform well on

both give us the capability to make such compromises. In this

instance, we can see rather than using the One Best method on the

Two Ridge landscape, we can also use the 2 Best and 2 Random

collaboration method that gives us good performance on the Two

Ridge landscape and also gives us the best performance on the

One Ridge landscape. However, the interaction of these settings

with the other parameters of the algorithm must be kept in mind.

4.2 Deceptive Landscapes

In the One Ridge Deceptive landscape, figure 6 shows a

pattern of performance for collaboration methods very similar to

the patterns shown in figure 5, for the One Ridge landscape with

no deception in it, keeping in mind that because the deceptive

landscape has more of the landscape with higher fitness, the

algorithm is achieving better results overall. Again, One Best and

One Random show poor performance, while other collaboration

methods with more collaborators demonstrate greater capability to

handle the One Ridge landscape. The same pattern of increased

number of collaborators as well as best collaborators mixed with

random demonstrating the best performance appears here.

Overall, it seems to demonstrate that deception has no effect on

the performance of collaboration methods.

However, let us look at the Deceptive Two Ridge landscape

results in figure 9. Again, we must take into account that the

landscape is overall higher in fitness and also that the Two Ridge

achieves high performance with any collaboration method, so we

are examining a much narrower range of performance. Given

these caveats, we can still see a marked change from the

performance of the collaboration methods on the Deceptive Two

Ridge from the same methods performances on the Two Ridge

with no deception. We can see that the previous best

collaboration method, the One Best collaborator, severely

decreased in performance, such that the maximum value isn’t even

in its 95% confidence interval. Instead, even purely random

collaboration methods are outperforming it and instead of

increased number of collaborators decreasing performance, as was

the case in the Two Ridge with no deception, more collaborators

improves the performance over the One Best collaboration

method. In this landscape, deceptiveness seems to have a severe

effect on the performance of the collaboration methods, to the

point that the previous best method is now one of the worst

methods. We are now left with two contrasting views, where one

shows little to no change in the behavior of the collaboration

methods while the other shows great changes. The question is

then whether deceptiveness truly has no effect on one and a great

effect on the other, or if there is more to the story than the

maximum fitness over multiple runs is showing us.

Let us then examine how often the collaboration methods are

deceived, that is out of the fifty runs, how many times were the

best individuals found on the deceptive area of the landscape.

This gives us some idea of how the collaboration methods are

handling the deceptiveness of the landscapes. Figures 7 and 10

show the deception rates over the fifty runs for two important

statistics. The first, Population Trend, tells us if the final

generation’s best individual was on the deceptive area of the

landscape. This tells us whether or not the population as a whole

was led to a deceptive area. The second, Best, tells us if the best

of the entire run was found in the deceptive area of the landscape.

This will give us an idea if the algorithm as a whole was deceived,

and if the Population Trend was an anomaly of chance.

Looking at figure 7, we can see some intriguing patterns in

the deception rates and that differing collaboration methods do

handle deceptiveness differently on the Deceptive One Ridge

landscape. The first thing to note is that as soon as elitism is

added to the collaboration method, that both the Best and

Population Trend rates are correlated, almost always having equal

values, while using purely random collaborators leads to a lower

Best deception rate with a higher Population Trend rate. Further,

the One Best collaboration method has a deception rate of 50%

for both the statistics. This means that half the time it is both led

to the deceptive side of the landscape and that it finds the best of

the entire run on the deceptive side. However, other collaboration

methods achieve deception rates as low as half that value, tending

toward the deceptive area only a quarter of the time. Also, up to a

point, increasing the number of collaborators gives use a better

fitness. Despite the similar best of run values for both the One

Ridge with no deception and the Deceptive One Ridge,

deceptiveness certainly has an effect on it.

CAP5512: Evolutionary Computation at UCF, Student Papers, Spring 2007

16

Now on figure 10, we can see why the One Best

collaboration method performed much worse on the deceptive

Two Ridge landscape. Again, the One Best method has a 50%

deception rate, leading it to the deceptive optimal half of the time.

Interestingly, the average best of run value on the Deceptive Two

Ridge for the One Best collaboration method is the average of the

two optima in the landscape. This time, however, there are much

different patterns in the deception rate behavior for the different

collaboration methods. Outside of the purely random

collaboration methods, increasing the number of collaborators

seems to enhance the capability to handle the deceptiveness on

this landscape.

The ability of the collaboration method to bias our search can

be seen on these four landscapes. Each landscape has its own best

performer in relation to best of run fitness, or deception. If we

know that our landscape has certain properties, then we can

choose specific collaboration methods that perform well on it,

while sacrificing capability for other landscapes. On the other

hand, if we know nothing about the landscape we may need to use

a collaboration method which has lower performance on specific

landscape, but is robust against multiple landscapes. This follows

from [15], with deceptiveness adding another variable to our set

of problems, we must be careful to take it into account when

biasing our search since robustness to deception may mean

reduced performance on specific landscapes.

5. Conclusions and Future Work

The basic understanding of the behavior of co-evolutionary

algorithms is just beginning. This paper examined a very narrow

subset of the abilities of these algorithms and the parameters that

can be modified. We have shown that various collaboration

methods have properties that make them superior to others on

specific landscapes. With the correct collaboration method, both

the One Ridge and Two Ridge landscapes can have solutions

found efficiently. We have also shown that by varying

collaboration methods, we are able to overcome deceptiveness on

landscapes. Further, collaboration methods that may be very good

on one landscape, may not perform well across multiple

landscapes, therefore a sub-optimal but more robust collaboration

method may be preferable if the shape of the landscape is

unknown.

This is only a small number of the possibilities for varying

the abilities of the CCEA. Interactions between the various

parameters that can be adjusted will provide an even greater range

of capability. The experiments in this paper were limited to

populations of size ten. This limits the number of paths that can

be explored with the collaboration methods with an increased

number of collaborators. Future work should look at the

capability of these same collaboration methods with increasing

population size. As population size increases, an increased

number of collaborators may also be examined. We also limited

the evaluations to a simple optimistic fitness assignment when

there were multiple collaborators; however there are other ways to

assign the fitness when there are multiple collaborators [12].

Understanding the interaction effects of these different parameters

is a cornerstone to being able to effectively use co-evolutionary

algorithms. Once these interactions are known, we can bias our

algorithms in predictable ways to allow for better solutions to

specific landscapes or generalize it for robustness in unknown

landscapes.

6. REFERENCES
[1] K. De Jong. Evolutionary Computation: A Unified

Approach. MIT Press, 2006.

[2] S. Ficici and J. Pollack. Challenges in Coevolutionary

Learning: Arms-race Dynamics, Open-endedness, and

Mediocre Stable States. In C. Adami, R. Belew, H. Kitano

and C. Taylor, editors, Proceedings of the Sixth International

Conference on Artificial Life, pages 238-247, MIT Press,

1998.

[3] D. Goldberg. Genetic Algorithms in Search, Optimization,

and Machine Learning. New York, Addison-Wesley, 1998.

[4] D. Goldberg. The Design of Innovation: Lessons from and

for Competent Genetic Algorithms. Boston, Kluwer, 2002.

[5] J. Holland. Adaption in Natural and Aritificial Systems. Ann

Arbor, MI, University of Michigan Press, 1975.

[6] E. Popovici and K. De Jong. A Dynamical Systems Analysis

of Collaboration Methods in Cooperative Co-evolution. In

AAAI Fall Symposium on coevolutionary and Coadaptive

Systems. AAAI Press, 2005.

[7] E. Popovici and K. De Jong, The Effects of Interaction

Frequency on the Optimization Performance of Cooperative

Coevolution, In Proceedings of the 8th annual conference on

Genetic and Evolutionary Ccomputation. Seattle,

Washington, 2006.

[8] E. Popovici and K. De Jong. Understanding Competitive Co-

Evolutionary Dynamics via Fitness Landscapes. In S. Luke,

editor, AAAI Fall Symposium. Artificial Multiagent

Learning. AAAI Press, 2004.

[9] E. Popovici and K. De Jong. Understanding Cooperative Co-

evolutionary Dynamics via Simple Fitness Landscapes. In

Proceedings of the 2005 conference on Genetic and

evolutionary computation, GECCO-2005, 2005.

[10] K. Potter and K. De Jong. A Cooperative Coevolutionary
Approach to Function Optimization. In Proceedings of the

Third Conference on Parallel Problem Solving from Nature,

pages 249-257, Jerusalem, Israel, 1994. Springer.

[11] W. Spears. Using Neural Networks and Genetic Algorithms

as Heuristics for NP-complete problems. Master’s thesis,

George Mason University, Fairfax, VA.

[12] R. P. Wiegand. An Analysis of Cooperative Colevolutionary

Algorithms. PhD thesis, George Mason University, Fairfax,

VA, 2004.

[13] R.P. Wiegand, W. Liles, and K. De Jong. An Emprical

Analysis of Collaboration Methods in Cooperative

Coevolutionary Algorithms. In L. Spector, editor,

Proceedings of GECCO 2001, pages 1235-1242. Morgan

Kaufmann, 2001.

[14] R.P Wiegand and M.A. Potter. Robustness in Cooperative

Coevolution. In Proceedings of the 8th annual conference on

Genetic and Evolutionary Computation. Seattle, Washington,

2006.

[15] D.H. Wolpert and and W.G. Macready. No Free Lunch

Theorems for Optimization. In IEEE Transactions on

Evolutionary Computation. Volume 1, Issue 1, 1997.

CAP5512: Evolutionary Computation at UCF, Student Papers, Spring 2007

17

Using Genetic Algorithms to Improve the Performance of
Logistic Regression Models

Anthony Vaiciulis
University of Central Florida

Orlando FL 32816

anthony.vaiciulis@gmail.com

ABSTRACT
Logistic regression models are often used in data mining
problems in which an accurate, interpretable predictive model is
required. Some disadvantages of these models include the fact
that the user must choose which predictors enter the model, what
functional form these predictors have, how to incorporate
nominal-scale predictors into the model, which interaction terms
enter the model, and how to handle observations with missing
values. For all but the smallest datasets, the large search space
defined by these choices prevents an exhaustive search to find the
optimal set of choices. This paper addresses the first three of these
concerns, describing how to create accurate, interpretable
predictive models using logistic regression tuned by a genetic
algorithm. The inclusion of interaction terms would be a natural
extension of the work presented here.

General Terms
Algorithms, Performance.

Keywords
Logistic Regression, Predictive Modeling, Genetic Algorithm,
Evolutionary Computation.

1. INTRODUCTION
Data mining is a means of extracting previously unknown,
actionable information from large amounts of data using
sophisticated, automated algorithms to discover hidden patterns,
correlations and relationships [2,3,8,12,16,18,22,23,29,31,38].
Building predictive models is often an important part of the data
mining process. In a typical case, historical data is used to create a
mathematical model which is then applied to new data to make
predictions. This is an example of a supervised learning method,
in which a training dataset consists of a response variable plus the
predictor variables. Note that in data mining applications, a higher
emphasis is typically placed on predictive accuracy rather than on
ability of the model to yield insights into the nature of the
relationships among the predictors and between the predictors and
the response. Logistic regression is often used in predictive
modeling when the response is binary because this type of model
is often easily interpreted and can be very accurate. With other
models such as artificial neural networks, a potential for higher
predictive accuracy comes at the expense of reduced
interpretability -- the magnitude and direction of the relationship
between each predictor and the response may not be clear, for
example.

 Some disadvantages of logistic regression models include the
fact that the user must choose which predictors enter the model,
what functional form these predictors have, how to incorporate

nominal-scale predictors into the model, which interaction terms
enter the model, and how to handle observations with missing
values. For all but the smallest datasets, the large search space
defined by these choices prevents an exhaustive search to find the
optimal set of choices. In this paper we describe the use of a
genetic algorithm to tune the parameters (choices) of a logistic
regression model. This technique efficiently searches the large
space, balancing the conflicting forces of high predictive accuracy
and low complexity as defined by the number of predictors in the
model.

Section 2 presents background information on logistic regression
and previous work done on this using evolutionary algorithms.
Section 3 describes some details of the genetic algorithm
including how the fitness function is defined. In Section 4 we
describe the datasets used to test the performance of the
technique. Section 5 describes the experiments and results,
incrementally increasing the sophistication of the model at each
stage. In Section 6 we state the conclusions and offer ideas for
future work.

2. BACKGROUND
2.1 The Logistic Regression Model
To understand the logistic regression model and introduce some
terminology we take an example of measuring the age of a tree
using several characteristics of the tree. A dataset may consist of
the height, girth, species and age of 100 trees. A specific analysis
may use the height and girth as interval-scale (numeric)
predictors, species as a nominal-scale (categorical) predictor, and
age as an interval-scale response. So this dataset has 100
observations, 3 predictors and an interval-scale response, age.
Here, a simple linear regression model may be appropriate:

age = β0 + β1(height) + β2(girth) +β3(species)

where the βis are coefficients to be determined by a least squares
fitting process.

 Logistic regression models [21] are used in problems in which
the response is binary. In the tree example above, we may simply
be interested in whether or not the tree is more than five years old.
We define a new, binary response variable “mature” with value 1
for a tree with age >= 5 and value 0 for a tree with age < 5. A
logistic regression model may be formed by defining p as the
probability that the response takes the value 1, P(mature=1):

log(p/(1-p)) = β0 + β1(height) + β2(girth) +β3(species)

Given enough training data, the values of the βi coefficients can
be estimated by iterative numerical optimization techniques,
which results in a completely specified logistic regression model
that can be used to predict the value of ‘p’ for any observation
containing the predictors height, girth and species.

CAP5512: Evolutionary Computation at UCF, Student Papers, Spring 2007

18

 The simple model above is most likely not the optimal model.
It may be that introducing a transformation, such as height2, will
produce a model that fits the data better. It may be that the
inclusion of a multiplicative interaction term such as height*girth
will improve the model performance. If the nominal-scale
predictor species has more than two distinct values, it cannot be
used as shown in the model above, with a single coefficient. It
must be converted into a numeric form that the logistic regression
model understands. Thus the logistic regression model demands
much of the user and various strategies have been created to
develop such models [19].

 One reward of a well-developed model is an easy
interpretation of the βi coefficients. For example, let us assume
that the logistic regression model shown above fits the data well,
height is measured in meters, and the value of the β1 coefficient is
found to be +0.28. The interpretation is that the estimated odds
that the tree is at least 5 years old (i.e. mature) increases by a
factor e0.28 = 1.3 for every additional meter of height, adjusting
for the girth and tree species.

 Given a dataset with many predictors, it is usually desirable to
select that subset of the predictors which yields a model that fits
the data well. This results in a more compact representation of the
data. There are several well known methods of choosing the
subset of predictors in a regression problem including “forward”,
“backward” and “stepwise” methods [21]. These methods do not
necessarily give the best subset and they contain somewhat subtle
flaws in the statistical assumptions they make [14,19]. An
exhaustive search of all possible combinations of predictors and
transformations takes a prohibitively long time.

2.2 Previous Work
For several reasons, an evolutionary algorithm (EA) approach to
determining the form of a logistic regression model is quite
natural as a regression model satisfies many of the rules of thumb
suggesting when an EA approach may be successful [28]. First,
the search space is very large due to the many predictors, the
many possible transformations of continuous variables, and the
various ways of collapsing levels of categorical variables. An
exhaustive search of all possible combinations of options is not
feasible. Second, the search space is not well understood and may
have many local optima. There is no reason to believe a gradient
approach will do well. Third, the fitness function is noisy. The
fitness of a regression model is evaluated on a test sample of
observations and has some random error. Methods such as cross-
validation can be used to smooth out these errors by evaluating
fitness of a solution on many samples, but still there will be
uncertainty. EAs can perform robustly in the presence of small
amounts of noise. Finally, finding a good, but not necessarily the
best possible regression model in terms of predictive accuracy, is
acceptable.

 Some research has already been done on how to use EAs to
solve regression problems. Koza used genetic programming
techniques to perform “symbolic regression” -- finding the
functional form as well as the coefficients in fitting a curve to
data points [25]. Siedlecki and Sklansky [34] studied the use of
genetic algorithms (GAs) [11,17,28] for the general problem of
predictor selection. Some studies have used a GA to select
predictors in logistic regression [36,37]. They did not consider
transformations of predictors, which potentially can yield a more
accurate model. They also did not consider nominal-scale

predictors, which occur often in real-world datasets. Krause and
Tutz used a GA for predictor selection and for finding the best
transformations in a generalized additive model, which is less
interpretable than a standard logistic regression model because
there is no parametric form for the predictor transformations
[26,27]. They also did not consider nominal-scale predictors.
Broadhurst et al. use GAs only as a method for variable selection
in a linear regression problem. [5].

 Bala et al. use GAs to create a predictive model but the
underlying learning machine optimized by the GA is a decision
tree rather than a logistic regression model. This is an interesting
approach as a decision tree implicitly handles transformations of
predictors, interactions among predictors, nominal-scale
predictors and predictors with missing values. Thus the GA is
used only for selection of predictors. A single predictor tree,
however, has several disadvantages including instability in
predictions, relatively poor predictive accuracy, and difficulty in
interpretation for trees of larger size. Combinations of trees
eliminate some of these disadvantages at the cost of a great loss of
interpretability.

3. THE GENETIC ALGORITHM
In this paper we describe a technique of using a GA to optimize a
logistic regression model. The GA is used to determine the subset
of interval-scale predictors in each model, the functional form of
each of these predictors, and the subset of nominal-scale
predictors in the model. We use a conventional bit-encoded GA.
Unless otherwise noted, the following GA parameters are used:
population size of 50, 50-70 generations, bit-flip mutation with
rate 0.01, two-point crossover with rate 0.7, best fitness individual
appears unchanged in next generation with probability one
(“elitism”), tournament selection of size n=4 and probability 0.9
to select the most fit individual among the four. Most results are
presented as averages over multiple runs, each with a different
random number seed. Standard deviations calculated from the
values of multiple runs. More details on the bit encoding of the
GA are given in Section 5.

 Each individual in the population represents the choices made
regarding which predictors to include and how to transform them.
Given these choices the fitness can be evaluated. The fitness has
two components: predictive accuracy and complexity. Here, we
define complexity as the fraction of total predictors which are
used in the model. For example, if a dataset contains a total of 100
predictors and a specific model includes only 25 of them, the
complexity of that model is 0.25. This complexity is a measure of
the number of degrees of freedom of a specific model.

 Several methods of evaluating predictive accuracy were
considered. Bootstrap methods [7,13] were discarded in favor of a
five-fold cross-validation [20,30,32] method. In both cases, area
under the ROC curve (AUC) is used as the measure of predictive
accuracy [20,35]. The ROC curve is a plot of true positive rate
versus false positive rate, with a larger area under the curve
indicating a model with higher predictive accuracy. In statistical
terms, AUC is equal to the value of the Wilcoxon-Mann-Whitney
test statistic and is also the probability that the classifier will score
higher on a randomly drawn positive sample than on a randomly
drawn negative sample.

CAP5512: Evolutionary Computation at UCF, Student Papers, Spring 2007

19

 In this study, the fitness function to be maximized is defined as
a linear combination of AUC and complexity:

fitness = AUC - α(complexity)

where AUC ranges from 0.5 (random guessing) to 1.0 (perfect
predictions), complexity ranges from 0 (no predictors are used in
model) to 1 (all predictors are used in model), and α is set to 0.1
unless otherwise noted. Larger values of AUC and smaller values
of complexity are desirable. The R software environment is used
for all facets of analysis presented in this paper unless otherwise
noted.

4. DESCRIPTION OF DATASETS
Several datasets were used to evaluate the results of the GA-tuned
logistic regression model. Each dataset was required to satisfy the
following conditions: 1) the response should be binary so logistic
regression is a suitable candidate model, 2) the number of
observations should be at least several hundred to minimize
problems that arise when developing a predictive model for small
datasets, 3) the number of predictors should be relatively large
(e.g. > 10) to provide a problem in which an exhaustive search is
truly prohibitive, and 4) the amount of preprocessing already
performed on the dataset should be minimized. Requirement 4 is
included because, for example, some datasets have already had
nominal-scale predictors transformed into numeric predictors by
an unknown or possibly sub-optimal method. Some details

4.1 M2007 Dataset
This dataset, a subset of the dataset used in the M2007 data
mining competition, consists of 10,669 observations, a binary
response and 166 predictors of which 38 are interval-scale and the
rest binary. The response variable identifies those people who are
likely to be high-revenue customers for a magazine company. The
binary predictors are used in the model directly with no
transformations. We use this dataset with many predictors in the
first phase of algorithm development, when the GA is used only
to select subsets of predictors. Five runs are performed and results
are used to study some details of how the GA is operating and
how its performance compares with forward, backward and
stepwise selection methods.

4.2 Email Spam Dataset
This dataset is used extensively in Hastie et al. [20], where
enough information is given to allow direct comparisons of
performance between the GA-tuned logistic regression model and
the models in Hastie. The spam dataset contains 4601
observations, a binary response, and 57 interval-scale predictors.
The response indicates whether or not an email is spam
(unsolicited junk mail). We use this dataset in the second phase of
algorithm development in which transformations of predictors are
allowed.

4.3 Graduate School Enrollment Dataset
This dataset consists of 2665 observations, a binary response and
35 predictors of which 24 are interval-scale and 8 are nominal-
scale. The binary response indicates whether or not a student
admitted to a graduate program at the University of Central
Florida (UCF) chooses to enroll. We use this dataset in the third
phase of algorithm development in which nominal-scale
predictors are included.

5. EXPERIMENTS AND RESULTS
5.1 Interval-scale Predictors Only
We first used the M2007 dataset to study the performance of the
GA compared to several standard methods of predictor subset
selection. Each individual in the population consists of 166 bits,
one for each predictor in the dataset. It was found, relative to the
GA parameters stated in Section 3, that a smaller population, a
smaller number of generations, less or no elitism, and larger
population initialization probabilities generally yielded models
with lower fitness. Figure 1 shows the fitness of the best model in
each generation with vertical bars indicating the standard
deviation. After 50 generations, the GA clearly finds a logistic
regression model which has a fitness at least equivalent to the best
fitness reached by the forward, backward and stepwise predictor
selection methods indicated by the three horizontal lines. The
forward, backward and stepwise methods were implemented in
SAS.

Figure 1. Fitness vs. generation for M2007 dataset.

Figure 2. AUC vs. complexity for run 1 on M2007 dataset.

CAP5512: Evolutionary Computation at UCF, Student Papers, Spring 2007

20

 Figure 2 shows the predictive accuracy of the model as
measured by AUC vs. the complexity of the model for the highest
fitness model in each generation in run 1. The solid circle
represents the 1st generation while the empty circle represents the
50th generation. The trade-off between predictive accuracy and
complexity as codified in the fitness function manifests itself as a
zigzag line in this plot.

 Figure 3 shows the AUC of the highest fitness model for GAs
(plus signs) versus the number of predictors in the model. The
solid circles are for forward, backward and stepwise methods.
Generally speaking, models closer to the top left corner of this
plot are better. The five runs of the GA produce relatively fit
models, which tend to have higher AUC and/or lower complexity
than the models resulting from forward, backward or stepwise
methods.

Figure 3. AUC vs. number of predictors for M2007 dataset.

Figure 4. Number of predictors in best model vs. predictor

index in run 1 on M2007 dataset.

 Figure 4 shows that even in the last ten generations of one of
the runs the number of predictors in the highest fitness model is
not constant. Although each of these best models contains 25-30
predictors, only 13 of the predictors are included in all ten best
models. Thus there is a collection of different models which have
similarly high fitness.

 For the first 20 of the 166 predictors, Figure 5 shows which of
them are included (indicated by an X) in the highest fitness model
of each GA run and in the forward, backward and stepwise
models. Several predictors such as 1 and 2 seem to be very useful
as all methods include these predictors. Other predictors such as
11 and 20 are found to be useful only by the GA-tuned logistic
regression model. This table also provides clear evidence that the
best models found by the GA are not identical for the different
runs.

Figure 5. A comparison of which predictors are included in

various models for the M2007 dataset.

5.2 Addition of Transformations
The GA was then modified to allow for transformations of the
interval-scale predictors. Figure 6 shows, from top to bottom, the
following twelve transformations allowed for each predictor x: x2,
x1.75, x1.5, x1.25, x1, log(x), x0.5, x0.33, x-0.33, x-0.5, x-1, x-2. These
transformations are encoded by four bits for each predictor. If the
number of these four bits with value 1 is zero or one, then there is
no transformation (x1). This choice, plus the relative sparseness of
1s in the initial population, biases the initial search to predictors
with no transformation. Each predictor is now encoded by five
bits – one for the ON/OFF switch and four for the transformation.
The spam dataset was used to study the GA performance with this
modification. Each individual now consists of 57*5=285 bits.

1.0 1.2 1.4 1.6 1.8 2.0

0
1

2
3

4

x

f(x
)

1.0 1.2 1.4 1.6 1.8 2.0

0
1

2
3

4

x

f(x
)

1.0 1.2 1.4 1.6 1.8 2.0

0
1

2
3

4

x

f(x
)

1.0 1.2 1.4 1.6 1.8 2.0

0
1

2
3

4

x

f(x
)

1.0 1.2 1.4 1.6 1.8 2.0

0
1

2
3

4

x

f(x
)

1.0 1.2 1.4 1.6 1.8 2.0

0
1

2
3

4

x

f(x
)

1.0 1.2 1.4 1.6 1.8 2.0

0
1

2
3

4

x

f(x
)

1.0 1.2 1.4 1.6 1.8 2.0

0
1

2
3

4

x

f(x
)

1.0 1.2 1.4 1.6 1.8 2.0

0
1

2
3

4

x

f(x
)

1.0 1.2 1.4 1.6 1.8 2.0

0
1

2
3

4

x

f(x
)

1.0 1.2 1.4 1.6 1.8 2.0

0
1

2
3

4

x

f(x
)

1.0 1.2 1.4 1.6 1.8 2.0

0
1

2
3

4

x

f(x
)

CAP5512: Evolutionary Computation at UCF, Student Papers, Spring 2007

21

Figure 6. The 12 transformations allowed for each predictor.

Figure 7. Fitness vs. generation for spam dataset.

Figure 8. AUC vs. generation for spam dataset.

Figure 9. Complexity vs. generation for spam dataset.

Figures 7, 8 and 9 show the best fitness in each generation as

well as the tow components of fitness, AUC and complexity. In
the later generations, a combination of small increases in AUC
and decreases in complexity drive the fitness higher. As a

reference point for the complexity plot, note that a model using 10
of the 57 available predictors has a complexity of (10/57)*0.1 =
0.0175.

The highest fitness model in each run is next trained on the
same data used to train by Hastie et al.[20] Then this model is
used to predict the 1536 observations in the test set, as defined by
Hastie, to compare directly with Hastie’s results. A model in run 5
with only 9 predictors had the lowest misclassification rate of
6.6% in the test set. This can be compared to the GAM model in
Hastie which has 16 predictors and a misclassification rate of
5.3%. Note that although the GA-tuned logistic regression model
has a larger misclassification rate, it is a simpler model because it
has only about half as many terms and its predictors have a well-
specified functional form. In the GAM model of Hastie, the term
for each predictor is the result of a scatter plot smooth which does
not give a parametric form. Other models developed by Hastie for
this dataset include MART (4.0% error, 48 predictors), MARS
(5.5% error, 60 independent basis functions), and CART (8.7%
error, 17 predictors). The MART, MARS and CART models all
include interactions between predictors making them more
difficult to interpret. The 6.6% error and 9 predictors of the GA-
tuned logistic regression model is a much more compact
representation of the dataset but its predictive accuracy is not as
great as some of Hastie’s models. Note that changing the
definition of the fitness function, specifically decreasing the α
parameter, would result in a more accurate but more complex
model.

5.3 Addition of Nominal-Scale Predictors
Finally, the graduate enrollment dataset is used to study how well
the GA performs. A smoothed weight-of-evidence method is used
to convert the multiple, distinct levels of each nominal-scale
predictor into a single numeric predictor [15,33]. The initial
population probability was increased from 0.1 to 0.2 to achieve a
higher AUC since slightly more complicated models result. The α
parameter in the fitness function was decreased from 0.1 to 0.05
also to produce models with a higher AUC. The specific goal for
this dataset was to find a model with an AUC value greater than
or equal to 0.784, but with a complexity lower than that of the
model currently being used for this dataset by the UCF Division
of Graduate Studies. The current model has an AUC of 0.784 with
19 terms. Nine of the terms are main effects (single predictors)
and 10 of the terms are multiplicative interactions of two
predictors. Due to the many interactions, the model is more
complicated than a model with 19 main effect terms. The GA-
tuned logistic models have AUC of about 0.784 or 0.785 on
average (see Figure 10). More importantly they have only 11
predictors and all are main effect terms. This is much less
complicated than a model with 19 terms with interactions.

 Figures 11 and 12 show the fitness and complexity of the best
model in each generation. The initial fitness is driven by an
increase in complexity which leads to much higher predictive
accuracies, but this trend is reversed in the later generations when
the GA is able to find higher fitness models with lower
complexities. Figure 13 shows the Hamming mean value for all
unique pairs of individuals in the population. It clearly shows that
the diversity of the population increases initially as the GA
explores the search space and then decreases in later generations.

CAP5512: Evolutionary Computation at UCF, Student Papers, Spring 2007

22

Figure 10. AUC of best model vs. generation for graduate

enrollment dataset.

Figure 11. Best fitness vs. generation for graduate enrollment

dataset.

Figure 12. Complexity of best model vs. generation for

graduate enrollment dataset.

Figure 13. Hamming mean vs. generation for graduate

enrollment dataset.

6. CONCLUSIONS
Using several different datasets, we have demonstrated the use of
a genetic algorithm to tune a logistic regression model which
handles transformations of interval-scale predictors as well as
automatic incorporation of nominal-scale predictors. The
technique can be used to find a logistic regression model of high
accuracy and relatively low complexity.

 The work presented here can be extended in several ways.
Terms representing multiplicative interactions between predictors
can be allowed in the regression model. This may increase fitness
at the cost of reduced interpretability of the model. The smoothing
parameter for nominal-scale predictors can be allowed to vary. On
a broader scale, the use of multiobjective genetic algorithms
[6,9,10] can be investigated. In this paper, we have used a
weighted linear combination of two conflicting objectives to
produce a single objective function. With a multiobjective GA,
however, the conflicting objectives remain separate and the
algorithm yields a collection of best fitness models with various
combinations of values for the different objectives. Some work
has already been done with multiobjective GAs in predictive
modeling [4,24] as there is often a trade-off between, for example,
between raw performance and complexity of a predictive model.

 The technique described in this paper still has the disadvantage
of not incorporating missing values automatically. Various kinds
of selection, mutation, and crossover were not explored. Each
fitted model contains information about how significant each
predictor is based on the estimates of the coefficients and their
standard errors. Perhaps this information can be fed back to the
GA to improve performance. There are many avenues for future
investigation.

7. ACKNOWLEDGMENTS
The second author wishes to thank the University of Central
Florida department of Statistics and Actuarial Science for making
SAS software available.

CAP5512: Evolutionary Computation at UCF, Student Papers, Spring 2007

23

8. REFERENCES
[1] Bala, J., DeJong, K. Huang, J. Vafaie, H. and Wechsler, H.

Hybrid Learning Using Genetic Algorithms and Decision
Trees for Pattern Classification. Proceedings of the
International Joint Conferences on Artificial Intelligence
(IJCAI), Montreal, Canada, August 19-25, 1995.

[2] Berry, M.J.A., Linoff, G. Data Mining Techniques. Wiley,
New York, NY, 1997.

[3] Berry, M.J.A., Linoff, G. Mastering Data Mining. Wiley,
New York, NY, 2000.

[4] Bhattacharyya, S. Evolutionary Algorithms in Data Mining:
Multi-Objective Performance Modeling for Direct
Marketing. Proceedings of KDD 2000, Boston, MA, 2000.

[5] Broadhurst, D., Goodacre, R. Jones, A., Rowland, J. and
Kell, D. Genetic algorithms as a method for variable
selection in multiple linear regression and partial least
squares regression, with applications to pyrolysis mass
spectrometry. Analytica Chimica Acta 348:71-86, 1997.

[6] Coello Coello, C.A., Van Veldhuizen, D.A. and Lamont,
G.B. Evolutionary Algorithms for Solving Multi-Objective
Problems. Kluwer Academic Publishers, New York, NY,
2002.

[7] Davidson, A.C. and Hinkley, D.V. Bootstrap Methods and
their Application. Cambridge University Press, New York,
NY, 1997.

[8] Dasu, T. Johnson, T. Exploratory Data Mining and Data
Cleaning. Wiley-Interscience, New York, NY, 2003.

[9] Deb, Kalyanmoy. Multi-Objective Optimization using
Evolutionary Algorithms. Wiley, Chichester, England, 2001.

[10] Deb, K., Pratap, A., Agarwal, S. and Meyarivan, T. A Fast
and Elitist Multiobjective Genetic Algorithm: NSGA-II.
IEEE Transactions on Evolutionary Computation 6(2), 2002.

[11] DeJong, Kenneth A. Evolutionary Computation: A Unified
Approach. MIT Press, Cambridge, MA, 2006.

[12] Duda, R.O., Hart, P.E., Stork, D.G. Pattern Classification.
Wiley-Interscience, New York, NY, 2001.

[13] Efron, B. and Tibshirani, R. An Introduction to the
Bootstrap. Chapman & Hall/CRC, Boca Raton, FL, 1993.

[14] Faraway, Julian J. Practical Regression and Anova using R.
http://cran.r-project.org/doc/contrib/Faraway-PRA.pdf, 2002.

[15] Georges, J. Using non-numeric data in parametric prediction.
Proceedings of Seventh Annual Data Mining Conference
(M2004), Las Vegas, Nevada, 2004.

[16] Giudici, Paolo. Applied Data Mining. Wiley, New York,
NY, 2003.

[17] Goldberg, D. Genetic Algorithms in Search, Optimization
and Machine Learning. Addison-Wesley, Reading, MA,
1989.

[18] Hand, D. Mannila, H., Smyth, P. Principles of Data Mining.
MIT Press, Cambridge, MA, 2001.

[19] Harrell, Frank E. Regression Modeling Strategies. Springer
Science+Business Media. New York, NY, 2001.

[20] Hastie, T., Tibshirani, R., and Friedman, J. The Elements of
Statistical Learning. Springer-Verlag, New York, NY, 2001.

[21] Hosmer, David W. and Lemeshow, Stanley. Applied Logistic
Regression. Wiley-Interscience, New York, NY, 2000.

[22] Kantardzic, Mehmed. Data Mining: Concepts, Models,
Methods and Algorithms. Wiley-Interscience, New York,
NY, 2003.

[23] Kantardzic, M.M., Zurada, J., Editors, Next Generation of
Data-Mining Applications. Wiley-Interscience, New York,
NY, 2005.

[24] Kim, Y., Street, W.N. and Menczer, F. An Evolutionary
Multi-Objective Local Selection Algorithm for Customer
Targeting. Proceedings of Congress on Evolutionary
Computation (CEC-01), Seoul, Korea, 2001.

[25] Koza, J.R. Genetic Programming: On the Programming of
Computers by Means of Natural Selection. MIT Press,
Cambridge, MA, 1992.

[26] Krause, Rudiger. Genetic Algorithms as Tool for Statistical
Analysis of High-Dimensional Data Structures. Ph.D. Thesis,
Ludwig-Maximilians University, Munich, Germany, 2004.

[27] Krause, R. and Tuts, G. Genetic Algorithms for the Selection
of Smoothing Parameters in Additive Models.
Computational Statistics 21(1):9-31, 2006.

[28] Mitchell, Melanie. An Introduction to Genetic Algorithms.
MIT Press, Cambridge, MA, 1996.

[29] Mitchell, T.M. Machine Learning. McGraw-Hill, Boston,
MA, 1997.

[30] Picard, R. and Cook, D. Cross-Validation of Regression
Models. Journal of the American Statistical Association,
79(387):575-583, 1984.

[31] Pyle, Dorian. Data Preparation for Data Mining. Morgan
KaufmannSan Francisco, CA, 1999.

[32] Shao, J. Linear Model Selection by Cross-Validation.
Journal of the American Statistical Association 88(422):486-
494, 1993.

[33] SAS Press, Advanced Predictive Modeling Using SAS
Enterprise Miner 5.1.

[34] Siedlecki, W. and Sklansky, J. A note on genetic algorithms
for large-scale feature selection. Pattern Recognition Letters
10:335-347, 1989.

[35] Sing, T., Sander, O., Beerenwinkel, N., Lengauer, T. ROCR:
visualizing classifier performance in R. Bioinformatics 21
(20):3940-3941, 2005.

[36] Stacey, A. and Kildea, D. Genetic Algorithm Search for
Large Logistic Regression Models with Significant
Variables. Proceedings of the 22nd Int. Conf. on Information
Technology Interfaces (ITI), Pula, Croatia, June 13-16, 2000.

[37] Vinterbo, S. and Ohno-Machado, L. A genetic algorithm to
select variables in logistic regression: example in the domain
of myocardial infarction. Journal of the American Medical
Informatics Association, 6(Suppl.):984-988, 1999.

[38] Webb, Andrew. Statistical Pattern Recognition. Wiley, New
York, NY, 2002.

CAP5512: Evolutionary Computation at UCF, Student Papers, Spring 2007

24

http://cran.r-project.org/doc/contrib/Faraway-PRA.pdf

Reproducing an Evolution of Artificial Plants

Tommy McDaniel
University of Central Florida
4000 Central Florida Blvd.

Orlando, FL 32816
tommy@cs.ucf.edu

ABSTRACT
In this paper, a reproduction of experiments from Marc Tou-
ssaint’s paper Demonstrating the Evolution of Complex Ge-
netic Representations: An Evolution of Artificial Plants [11]
will be described.

1. INTRODUCTION
The author’s original intention was to do a project involv-
ing robotics. However, after consultation with Dr. Garibay,
it was decided that such a project would be too risky for
the scope of this semester project, since it had two parts
that could go wrong: the evolutionary part, and the neural
network part. A couple of ideas were presented to the au-
thor: one was to do an updated version of a survey that was
published a few years ago, and the other was to implement
Toussaint’s paper. The latter option was chosen.

1.1 Overview of the Paper
The paper that was implemented describes a method of
evolving artificial plants. The plants are represented us-
ing a form of L-systems, as proposed by Prusinkiewicz and
Hanan [10]. These consist of structures similar to context-
free grammars. A plant consists of an embryo Ψ and a set
Π of operators 〈π1, π2, . . . , πn〉. The embryo consists of a
string of symbols from the alphabet Σ = {A, B, C, . . . , P}.
The operators πi consist of a promoter, which is a single
element of Σ, and a string of symbols from Σ, which was
never given a clear name in the paper1.

Starting from the embryo Ψ, one creates Ψ1 by taking each
operator πi in order and replacing each instance of its pro-
moter in the embryo with its genes. One creates Ψ2 in the
same manner, but applying the operators to Ψ1 this time.
This process is continued until an arbitrary stopping point
is reached, at which point the final Ψn represents the plant’s
phenotype.

1This author referred to these strings as genes in his imple-
mentation of the paper.

Computing plant fitness requires simulating a three-dimensional
version of the plant. Given an overhead view of the plant,
every green pixel2 adds to the fitness an amount dictated
by the height at that pixel. This is counterbalanced by a
negative weight, calculated based on how big the plant is.3

The concept of generative representations is certainly not
unique to this paper. Hornby and Pollack have published
much research on generative representations in recent years
[1, 2, 3, 4, 5, 6, 7, 8]. Kicinger, Arciszewski, and De Jong
recently compared the use of parameterized representations
versus generative representations to design skyscrapers [9].
The main idea of Toussaint’s paper was what it called 2nd-
type mutations. These were mutations of the operators that
were designed to be neutral (i.e., that resulted in the same
phenotype).

2. PROCEDURE
Toussaint stated in his paper that source code was available
on his website. However, no such source code was to be
found, and the author contacted Toussaint requesting a copy
of the code. After a communications problem, Toussaint was
never heard from again. It was at that point that the author
began implementing the entire paper on his own.

The author chose C as his implementation language. Tous-
saint said in his paper that “Evolving such plant structures
already gets close to the limits of today’s computers, both,
with respect to memory and computation time.” Therefore,
performance was of the essence. The graphical parts were
developed with the OpenGL family of toolkits. Sampling
from Poisson distributions was done with the free GNU Sci-
entific Library (GSL).4 Images of the plants were created
with the free GD library.5 All development was done in
Linux.

The first step was to be able to simulate arbitrary plants,
without regard for finding their fitness or evolving their rep-
resentations. This simulator portion was successfully cre-
ated and tested. Obtaining overhead information about the
plants simply required placing the camera at the proper po-
sition over the plant and reading OpenGL’s green and depth
buffers.

2Since leaves and only leaves are green, although, in a sim-
ulation, the choice of green is arbitrary.
3This is literally an estimate for how much the plant weighs.
4http://www.gnu.org/software/gsl
5http://www.libgd.org

CAP5512: Evolutionary Computation at UCF, Student Papers, Spring 2007

25

http://www.gnu.org/software/gsl
http://www.libgd.org

The evolutionary part, however, did not go nearly as smoothly.
The main problem was that C does not have built-in string
data structures, so one was written by hand and expanded
upon as the need arose. A string data structure was an ob-
vious need, since the lion’s share of dealing with these rep-
resentations involved string manipulation, due to the fact
that we are basically dealing with context-free grammars.
However, rich string data structures are extremely prone to
off-by-one errors. This part of the program took the vast
majority of the development effort.

2.1 Experimental Parameters
The experiments had many parameters that could affect
the outcome. The values used are documented in Table
1. Most values came from Toussaint’s original experiments.
The main difference is the value of %, which was found by
trial and error; values that were too small quickly resulted
in enormous, disorganized plants that led to expected sim-
ulation times measured in months for a single run, while
values that were too large resulted in plants being unable to
evolve. The values of α and β were fixed, as in Toussaint’s
second trial, due to the fact that otherwise they tended to
go as close to zero as possible. Plants were initialized with
the same genotype as in Toussaint’s experiments.

All runs were of 1,000 generations. The only known diver-
gence from Toussaint’s implementation is in how a plant’s
weight is calculated. Toussaint used a recursive function to
calculate the weight, whereas this implementation simply
counts the number of phenotypic elements (branches and
leaves).

3. RESULTS
After initial testing, seven quality runs were done with the
final settings. The statistics of the best plant of each run
are in Table 2, and aggregate statistics of these best plants
are in Table 3. An interesting phenomenon that occurred
in many cases6 was that the best plants were produced well
before the end of the run, usually shortly after fitness began
to increase significantly from near zero, followed by a decline
for the rest of the run.

There is an interesting correlation between embryo size and
fitness, as shown in Table 4. If we ignore run 3, then for
the other six runs, increasing embryo sizes result in lower
fitnesses. Since a small embryo must of necessity rely heavily
on its operators to create a large plant, whereas a large
embryo can be closer to a direct encoding, this appears to
support the utility of generative representations.

3.1 Run 1
The average fitness, best fitness, and standard deviation of
the fitness per generation are plotted in Figure 1. The best
plant is shown in Figure 2, and its operators are listed in
Table 5. Of the seven plants listed in this paper, this one
had the second-largest embryo and phenotype, but the least
operators and second-smallest weight. Its identifying char-
acteristic is its apparent thickness, which is caused by its
second operator, which produces 10 leaves rotated about a
single point. This effect is greatly magnified by its first op-
erator.

6Both in these results and in unpublished results.

3.2 Run 2
The average fitness, best fitness, and standard deviation of
the fitness per generation are plotted in Figure 3. The best
plant is shown in Figure 4, and its operators are listed in
Table 6. This plant had by far the largest embryo, and the
second-lowest fitness, but was otherwise unremarkable. The
looping structures are caused by its first operator, which
produces four leaves in a row, followed by a single rotation
of δ degrees.

3.3 Run 3
The average fitness, best fitness, and standard deviation of
the fitness per generation are plotted in Figure 5. The best
plant is shown in Figure 6, and its operators are listed in
Table 7. This plant had the smallest phenotype size, lowest
weight, and lowest fitness. It is notable that this small,
“premature” plant emerged in the second-fastest time of all
the runs. It is distinguished by the polygonal structures that
its operators create.

3.4 Run 4
The average fitness, best fitness, and standard deviation of
the fitness per generation are plotted in Figure 7. The best
plant is shown in Figure 8, and its operators are listed in
Table 8. This plant emerged very quickly, nearly 300 gener-
ations faster than the best plant of any other run, and had
the second-highest weight. The degree to which fitness fell
into a continual decline for the rest of the run after its emer-
gence is conspicuous. Similarly to run 2, the hoops that form
the plant are caused by the interaction of the three opera-
tors, which combine to form a structure consisting of many
sides with four leaves each followed by a single turn of δ
degrees.

CAP5512: Evolutionary Computation at UCF, Student Papers, Spring 2007

26

Parameter Value Description
δ 20 Rotation angle
b 20 Length of each side of plant bounding cube
T 1 Iterations through the list of operators

% 3× 10−7 Plant weight multiplier
α 0.01 First-type mutation rate
β 0.3 Second-type mutation rate
µ 30 Parent population size
λ 100 Offspring population size

Mmax 1,000,000 Phenotype size limit
Rmax 100 Maximum operators per plant
Umax 40 Size cutoff for symbol duplication mutations

Table 1: Experiment Parameter Values

Run 1 2 3 4 5 6 7
Generation 728 852 684 398 960 959 981
Embryo size 10,858 42,722 2,141 5,830 248 1,129 2,704

Phenotype size 442,549 166,950 86,362 208,299 156,310 203,856 835,998
Number of operators 2 3 5 3 8 6 8

Weight 76,440 145,229 70,044 180,499 146,596 189,695 160,542
Fitness 0.26016 0.248408 0.218884 0.391968 0.469252 0.447236 0.44273

Table 2: Statistics of Best Plant per Run

Average Standard Deviation
Generation 794.6 210.7
Embryo size 9,376 15,137.8

Phenotype size 300,046.3 261,169.5
Number of operators 5 2.45

Weight 138,435 47,467.8
Fitness 0.354091 0.107628

Table 3: Aggregate Statistics of Best Plants per Run

Run 5 6 7 4 1 2
Embryo size 248 1,129 2,704 5,830 10,858 42,722

Fitness 0.469252 0.447236 0.44273 0.391968 0.26016 0.248408

Table 4: Correlation Between Embryo Size and Fitness

Length of Genes Operator
3 D → AAA
64 A → ADDDDDDDDDDDDDDDDDIEEIEEEEIEEIEEDDDDDDDDIEEKEEMEEEEILEEIEEIEEIIE

Table 5: Operators of Best Plant of Run 1

Length of Genes Operator
9 A → IAIAIAIAB
1 C → F
2 F → IA

Table 6: Operators of Best Plant of Run 2

CAP5512: Evolutionary Computation at UCF, Student Papers, Spring 2007

27

Figure 1: Average fitness, best fitness, and standard deviation of fitness in run 1

(a) Overhead view (b) Glamour view

Figure 2: Best plant of run 1, generation 728, fitness = 0.26016

Length of Genes Operator
7 A → DOOFFDD
35 F → OEIIMAEEOPJELAEIIPIPIFIHEEGEEEEEEEE
2 P → NA
2 E → IA
1 N → I

Table 7: Operators of Best Plant of Run 3

CAP5512: Evolutionary Computation at UCF, Student Papers, Spring 2007

28

Figure 3: Average fitness, best fitness, and standard deviation of fitness in run 2

(a) Overhead view (b) Glamour view

Figure 4: Best plant of run 2, generation 852, fitness = 0.248408

Length of Genes Operator
7 F → FFFFFFE
7 F → IDAIAMM
2 M → IA

Table 8: Operators of Best Plant of Run 4

CAP5512: Evolutionary Computation at UCF, Student Papers, Spring 2007

29

Figure 5: Average fitness, best fitness, and standard deviation of fitness in run 3

(a) Overhead view (b) Glamour view

Figure 6: Best plant of run 3, generation 684, fitness = 0.218884

CAP5512: Evolutionary Computation at UCF, Student Papers, Spring 2007

30

Figure 7: Average fitness, best fitness, and standard deviation of fitness in run 4

(a) Overhead view (b) Glamour view

Figure 8: Best plant of run 4, generation 398, fitness = 0.391968

CAP5512: Evolutionary Computation at UCF, Student Papers, Spring 2007

31

3.5 Run 5
The average fitness, best fitness, and standard deviation of
the fitness per generation are plotted in Figure 9. The best
plant is shown in Figure 10, and its operators are listed in
Table 9. This plant had the smallest embryo, the second-
smallest phenotype, the highest fitness, and tied for the most
operators. This was the first run where fitness increased
nearly constantly after it got going, with its best plant ap-
pearing at the second-latest time of any of the runs.

3.6 Run 6
The average fitness, best fitness, and standard deviation of
the fitness per generation are plotted in Figure 11. The
best plant is shown in Figure 12, and its operators are listed
in Table 10. This plant had the second-smallest embryo,
the highest weight, and the second-highest fitness. It has
a markedly polygonal structure, with the polygons offset
slightly from each other. This run was marked by a pro-
longed period of increasing fitness, followed by somewhat of
a decline, and ending with a final burst that produced bet-
ter plants than had been produced before the decline. This
was the only run whose best plant came during an upswing
following a meaningful period of decline.

3.7 Run 7
The average fitness, best fitness, and standard deviation of
the fitness per generation are plotted in Figure 13. The best
plant is shown in Figure 14, and its operators are listed in
Table 11. This plant emerged the latest of any of the plants
in this paper, had by far the biggest phenotype, and tied for
the most operators. It has a wide, ribbon-like structure.7

4. CONCLUSIONS
The experiments from Toussaint’s paper can be considered
to have been successfully duplicated. While C or something
similarly fast may have been the wise choice for implement-
ing this paper, it would have probably been much better
to use preexisting string data structures instead of creating
new ones from scratch. In hindsight, this project had the
same problem as a robotics project: multiple points of fail-
ure. A robotics project could have had problems with either
the evolutionary part or the neural network part, but this
project also had two points of failure, the evolutionary part
and the graphical part.

Source code and data can be found at the author’s website
at http://cs.ucf.edu/~tommy.

5. REFERENCES
[1] G. S. Hornby. Generative representations for evolving

families of designs. In 2003 Genetic and Evolutionary
Computation Conference (GECCO 2003), 2003.

[2] G. S. Hornby. Functional scalability through
generative representations: the evolution of table
designs. Environment and Planning B: Planning and
Design, 31(4):569–587, July 2004.

[3] G. S. Hornby. Measuring, enabling and comparing
modularity, regularity and hierarchy in evolutionary
design. In 2005 Genetic and Evolutionary
Computation Conference (GECCO 2005), 2005.

7The author is reminded of IDE cables.

[4] G. S. Hornby, H. Lipson, and J. B. Pollack. Evolution
of generative design systems for modular physical
robots. In IEEE International Conference on Robotics
and Automation, 2001.

[5] G. S. Hornby, H. Lipson, and J. B. Pollack.
Generative representations for the automated design
of modular physical robots. IEEE Transactions on
Robotics and Automation, 19(4):703–719, 2003.

[6] G. S. Hornby and J. B. Pollack. The advantages of
generative grammatical encodings for physical design.
In Congress on Evolutionary Computation, 2001.

[7] G. S. Hornby and J. B. Pollack. Evolving l-systems to
generate virtual creatures. Computers and Graphics,
25(6):1041–1048, 2001.

[8] G. S. Hornby and J. B. Pollack. Creating high-level
components with a generative representation for
body-brain evolution. Artificial Life, 8(3), 2002.

[9] R. Kicinger, T. Arciszewski, and K. D. Jong.
Parameterized versus generative representations in
structural design: An empirical comparison. In 2005
Genetic and Evolutionary Computation Conference
(GECCO 2005), 2005.

[10] P. Prusinkiewicz and J. Hanan. Lindenmayer Systems,
Fractals, and Plants. Springer, New York, 1989.

[11] M. Toussaint. Demonstrating the evolution of complex
genetic representations: An evolution of artificial
plants. In 2003 Genetic and Evolutionary Computation
Conference (GECCO 2003), pages 86–97, 2003.

CAP5512: Evolutionary Computation at UCF, Student Papers, Spring 2007

32

http://cs.ucf.edu/~tommy

Figure 9: Average fitness, best fitness, and standard deviation of fitness in run 5

(a) Overhead view (b) Glamour view

Figure 10: Best plant of run 5, generation 960, fitness = 0.469252

Length of Genes Operator
36 A → OOOOCAAIIAIJIAIHIHEDAGIIAPOAIMAOACOO
40 O → ICAAAIIDIIMIDDIIOMICPIPJMICIDAAAADABAAAC
5 A → IIIII
3 I → IAI
3 M → AIA
3 L → HOE
1 N → L
1 L → L

Table 9: Operators of Best Plant of Run 5

CAP5512: Evolutionary Computation at UCF, Student Papers, Spring 2007

33

Figure 11: Average fitness, best fitness, and standard deviation of fitness in run 6

(a) Overhead view (b) Glamour view

Figure 12: Best plant of run 6, generation 959, fitness = 0.447236

Length of Genes Operator
13 E → FFFFFFFFFIIIA
60 F → FEIAEIIAGIAIMIIKIIJIIFIAIIAIKEIAEIIAGIJNKHIIMIIFIIAIAIAFIAIA
2 F → FF
4 F → GGGG
0 L →
4 G → IIIA

Table 10: Operators of Best Plant of Run 6

CAP5512: Evolutionary Computation at UCF, Student Papers, Spring 2007

34

Figure 13: Average fitness, best fitness, and standard deviation of fitness in run 7

(a) Overhead view (b) Glamour view

Figure 14: Best plant of run 7, generation 981, fitness = 0.44273

Length of Genes Operator
8 I → AAHNECLI
10 B → INIAAAIBIA
17 A → BBILMMMMMMMMMMMEA
12 M → BBIHKCGBEGEA
2 A → OA
5 B → HEEEE
2 O → BI
2 B → II

Table 11: Operators of Best Plant of Run 7

CAP5512: Evolutionary Computation at UCF, Student Papers, Spring 2007

35

Evolving A Simple Instinctive Behavior

Victor C. Hung
School of Electrical Engineering and Computer Science

University of Central Florida
Orlando, Florida

victor@isl.ucf.edu

ABSTRACT
This paper investigates a primitive implementation of an
instinct-based behavioral model in an artificial agent. It
serves as an early attempt in devising an artificially intelli-
gent entity whose decisions are based on instinct, as defined
by field of ethology. The agent behavior is represented as a
finite state machine. Three experiments were conducted to
investigate two key features of the behavior model: 1) the
external environment, and 2) the number of states needed
to represent behavior. The resultant instinctive behavior set
was based on a very simple representation structure whose
evolutionary mutability is sensitive to the stability of its en-
vironment factors. In general, the primary goal of this work
is to use a genetic algorithm to automatically produce a
basic behavior representation based on instincts.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: (Distributed Artificial In-
telligence)Multiagent systems

General Terms
Behavior Representation

Keywords
instincts, evolution, genetic algorithm

1. INTRODUCTION
Creating agent behavior representations is a time-consuming
effort, often requiring meticulous attention to small details
and countless hours of development and testing [1]. An au-
tomatically generated behavior model could replace these
knowledge-based models, eliminating this extended devel-
opment period. This paper investigates producing an agent
behavior representation based on instincts without human
intervention. The primary motivation of this endeavor is to
devise an agent behavior that is driven by a set of primitive,
innate behavioral mechanisms.

A specific application for an instinct-based behavioral model
is the action-response systems of artificial agents in a simu-
lated environment. These agents may exist as autonomous,
interactive entities in training scenarios, such as those found
in military exercises [9] or in video games [5]. In many cases,
these agents are implemented with scripted behaviors, re-
sulting in actions dictated by a simple input-output lookup
table [12]. The work in this paper presents an extremely
primitive behavior model of very basic instincts. The idea is
to provide a method to automatically derive this instinctive
behavior for use in more complex behavior representations,
such as those found in the aforementioned applications.

In this paper, the evolution of innate behaviors in actual
animals will be simulated using a genetic algorithm-based
method in a population of artificial agents. These evolved
behaviors will be viewed as instincts, as defined by ethol-
ogy. Two particular issues will be examined pertaining to
this evolution of intrinsic behaviors. The first will concern
the data structure representation of the agent behavior. The
second issue concerns the role of environment in the evolu-
tionary process. The experiments in this work were designed
to provide insight into these items.

The following sections give some related background infor-
mation, followed by a detailed account of the work at hand,
from the problem formulation to the experiment results.
The paper will conclude with a wrap-up discussion, a brief
mention of additional work to be done, and a conclusion
section.

2. BACKGROUND
The impetus for this work remains the idea that an agent’s
behavioral response set could feasibly be generated using
evolutionary means, without the need for an extended pe-
riod of hand-modeled behavior development. In nature, in-
stincts serve as an automatic behavior set for which animals
base their primitive responses upon. According to the work
of ethologists, instincts result from a process of behavioral
evolution [2]. For artificial agents, evolutionary algorithms
could also be applied to produce similar effects. With this
in mind, a few assumptions will be made regarding agent
behavior. The first assumption claims that instinctive be-
havior in animals is established as a priori constructs. This
suggests that no pre-learned skills are needed to execute in-
stinctive actions. Secondly, instincts are the result of evolu-
tion running its course upon the genetic makeup of animals.
Thus, both environmental and natural factors have an in-

CAP5512: Evolutionary Computation at UCF, Student Papers, Spring 2007

36

fluence on the instinctual characteristics of every species.
This section provides background material regarding these
assumptions.

2.1 Instincts
When discussing natural behavior, the idea of instincts im-
mediately comes to mind. Natural instincts result from a
process of behavioral evolution [6]. Over the course of mil-
lions of years, certain instincts may withstand the test of
time in an animal species. They essentially serve as a priori
behaviors instilled in an animal at birth, often directly re-
lated to a being’s ability to survive to adulthood. Instincts
differ from reflexes in that the former deals with an indi-
vidual’s ability to respond in a rationally motivated man-
ner, while a reflex simply is an intrinsic, physiological im-
pulse, usually triggered at a muscular, rather than cognitive,
level [10]. It is also noted that instincts are widely regarded
in modern psychology as general guidelines or motivations,
rather than specific skills or actions.

2.2 Behavioral Evolution
Ethology describes the study of animal behavior from a bi-
ological, as opposed to psychological, point of view. Hence,
ethology is a separate field from psychology, that offers its
own stance on instinctive behavior. In general, ethologists
examine instincts under an empirical, physiological light,
while psychologists treat instincts with a more abstract,
comparative approach.

As mentioned before, the development of instincts in animals
is viewed as an evolutionary process - Lorenz established this
standpoint as a staple of ethological studies [2]. Over long
periods of time, multitudes of organisms are spawned with
varying flavors of innate tendencies. As per the mechanics
of evolution, only those organisms that are good enough to
survive will be able to pass on their genetic make-up to the
next population. Within this genetic coding lies the set of
intrinsic instincts. Tinbergen asserts that these instincts
exist as Fixed Action Patterns (FAPs) [14]. FAPs are those
behaviors that are unlearned but are essential for an animals
survival. They are triggered by innate releasing mechanisms.
Examples of FAPs include bees mating dances, gulls egg-
laying patterns, and minnows feeding behaviors.

2.3 Genetic Algorithms and Evolving Behav-
iors

With the advent of evolutionary algorithms in computer sci-
ence, it is easily envisioned how such solutions may be ap-
plied to this problem of devising instinctive behaviors for
artificial entities. Stanley, Bryant, and Miikkulainen [13],
and Portegys [11] have approached this idea of performing
genetic algorithms to produce innate behavior sets. Stanley
et al. [13] present the idea of evolving agents to improve
their survival fitness in a video game environment. The skill
set of these agents is primarily of a military nature. Porte-
gys [11] evolves an agent that is skilled at the Monkey and
Bananas problem.

While both of these efforts promote the evolution of be-
haviors, their evolved behaviors are often characterized as
activities that require a high level of skill. The purpose of
this paper is to present a method that operates at a very

basic skill level - behaviors often described as instincts. The
works of Eck [3] and Inoue and Kobayashi [8] provide good
starting points in this particular realm. Both of these pa-
pers use a simple artificial life model that deals with basic
predator-prey dynamics in a grid-based world. This paper
serves to build upon the foundations set forth by these con-
tributions.

3. PROBLEM FORMULATION
In this work, the simple instinct of feed-or-flee will be exam-
ined. The environment that the agents reside in consists of
two consumable items: food and poison. The food sources
have a positive effect on the agents, while the poisons have a
negative effect. Additionally, multiple agents co-exist in the
world, competing for the food sources. Finally, four outer
walls will limit the environment’s spatial boundaries. The
agents will have to adapt a response to encounters with these
walls, amongst other items in the environment.

The population of agents will live for a year in the envi-
ronment with replenishing food and poison supplies. Each
agent carries its own health level, whose value is directly
related to its movements, and food/poison consumption.
This health indicator directly translates to the agent’s fit-
ness value, which will be introduced in a later section.

4. APPROACH
The implementation of the problem is separated into three
sub-components: 1) environment, 2) agent representation,
and 3) genetic algorithm. The following sections give a de-
tailed description for each of these parts.

4.1 Environment
The environment consists of a 50 unit by 50 unit grid, where
each grid space is occupied by either an agent, a food source,
a poison source, or an empty space. Only one item can oc-
cupy a grid space at one time. Figure 1 shows four scenarios
in which the food (designated as a group of three green cir-
cles) and the poison (red circles with X’s) exist in different
amounts. The agents are denoted as black circles with a line
segment indicating which direction it is facing.

The consumable items (food and poison) remain at a con-
stant number at all times. Their placements, however, are
not fixed. Food grows in randomly distributed clumps, while
poison regenerates in a uniform random distribution across
the grid. Each environment is characterized by its food and
poison source counts. These values can vary in various com-
binations of quantities. A plentiful food scenario has a large
portion of the world populated by food items. Moderate food
scenarios have patches of food clusters and empty areas scat-
tered throughout the landscape. Worlds with equal food and
poison are often characterized by a uniform random distri-
bution of poison amongst small groupings of food. Plentiful
poison scenarios are riddled with poison sources with a very
sparse amount of food scattered throughout.

A stable environment describes the situation where the food
and poison quantities remain constant from generation to
generation. A dynamic, or unstable, environment occurs
when these consumable counts vary drastically between gen-
erations. The effect of environmental stability on behavior

CAP5512: Evolutionary Computation at UCF, Student Papers, Spring 2007

37

Figure 1: Enviroment scenarios (clockwise, starting from top left): plentiful food scenario, moderate food
scenario, equal food and poison scenario, and plentiful poison scenario. Food is designated as a group of
green circles, poison sources are the red X’ed out circles, and agents are the black circles with directional
line segments.

CAP5512: Evolutionary Computation at UCF, Student Papers, Spring 2007

38

evolution is examined in the experimentation section of this
paper.

4.2 Agent Representation
Unlike the consumables, agents may roam freely throughout
the environment. They cannot move further than the outer
limiting walls of the world, nor can they move to any space
occupied by another agent. An agent faces a cardinal direc-
tion (north, east, south, west), and its only sensing capabil-
ity is the ability to see what item is immediately in front of
it (empty space, food, poison, other agent, or wall). When
an agent moves to a food or poison space, it eats that item.
Eating food gives the agent 50 units of health, while eating
poison reduces its healthy by 100 units. Agents all begin
with a health of 100 units, and any movements (turn left,
turn right, move forward, move backward) decrease their
health levels by 10 units. When an agent encounters a wall
or another agent occupying a space that it must move to,
the agent simply remains at its current grid space without
being assessed a health penalty.

Agent behavior is defined as a finite state machine (FSM)
of N -states. This representation is derived from Eck’s arti-
ficial life demonstration [3]. The FSM is encoded as a string
of real values in certain positions. For each state, there are
five transitions to other states, corresponding to each of the
agent’s five possible inputs. Agent input consists of which
item (empty space, food, poison, other agent, or wall) is di-
rectly in front of the agent at a certain time. A next state
and a next move (turn left, turn right, move forward, move
backward) is encoded into the behavior string. The number
of states in these behavioral models is completely arbitrary.
Figure 2 gives an example of an FSM-based behavior repre-
sentation for a 16-state agent behavioral model.

As mentioned before, the framework is flexible enough to
maintain an agent model with any number of states. All
agents in a single population, however, must share the same
number of behavior states. The encoded behavior string is
all that is needed to dictate agent responses. State zero
is the start state, and the environmental input drives the
agent’s next move. The FSM is clock-driven, where each
time step triggers a lookup on the agent’s behavior string.

4.3 Genetic Algorithm
Agent behavior is evolved using a traditional genetic algo-
rithm [7]. A novel aspect of this genetic algorithm is that
an FSM serves as the evolvable structure. Fogel [4] and Eck
[3] both provide early examples of FSM evolution, while the
latter provides direct support for the methods featured in
this research.

Each agent population is subjected to a randomly generated
environment for one generation, or 365 time steps. Regen-
eration of consumables occurs on a daily basis. After the
generation concludes, fitness levels are assessed for the pop-
ulation and a reproduction system of crossover and mutation
occurs to produce the next population. Fitness is calcu-
lated as the number of health units of an individual after
the generation concludes, with an initialized health of 100.
Two-point crossover happens at a 70% rate and mutation
occurs at 0.1%. Parent selection is 4-agent tournament with

Figure 2: Behavior FSM encoding example. This
figure shows a partial 16-state FSM and its equiva-
lent form as a string of real values. There are two
output values for each input (empty, food, poison,
agent, and wall) for each state. These output values
are: 1) the next move, followed by 2) the next state.
Also note that the default state is the zero state.

CAP5512: Evolutionary Computation at UCF, Student Papers, Spring 2007

39

Table 1: Genetic Algorithm Parameters
Generation Length 365 Time Steps
Selection Method Tournament, Size 4

Champ Selection Rate 0.9
Crossover Rate 0.7
Mutation Rate 0.001
Mutation Type 2-Point

a 90% champion selection. Table 1 summarizes the genetic
algorithm parameters used.

5. EXPERIMENTS
Three experiments were defined to investigate two important
aspects of this instinctive behavior system: 1) the optimal
number of states for the behavior representation, and 2)
the effect of the environment during behavioral evolution.
Experiment 1 pertains to the former, while experiment 2
and experiment 3 concern the latter issue. The next sections
describe each of these experiments.

5.1 Behavior Model Selection
The first experiment examines the optimal number of states
for the agent behavior model. Five FSM-based behavior
models were defined: 1-state, 2-state, 4-state, 8-state and
16-state. The 1-state behavior model was intended as a
control; it was not likely to produce any reasonable agent
response systems, due to its simplicity. The 16-state behav-
ior model represents a very highly complex agent cognition,
and it was featured as the default FSM size in Eck’s artificial
agent program [3].

Each behavior model was subjected to 2,000 environmen-
tal generations. 20 agents comprised the population size.
A food count of 1,750 units and a poison count of 50 re-
mained constant throughout the environment, constituting
the plentiful food condition. Individual poison sources and
food cluster placements were randomly distributed during
each regeneration (both at daily and generational levels).
The plentiful food scenario was chosen to allow all agents to
have easily accessible food sources at any given time. This
also prevented any behavior specialization, such as evolving
specific strategies for limited resource situations. The aver-
age fitness and best fitness was recorded for each behavior
model.

5.2 Effect of Static Environments
Experiment 2 shows how different environments affect the
evolution of behaviors. Nine different environments, de-
fined by different food/poison counts (10/0, 100/0, 1,000/0,
0/10, 0/100, 0/1,000, 10/10, 100/100, and 1,000/1,000) were
tested for 2,000 generations using 20 agents in each popula-
tion. The key ingredient in this experiment was the fact that
all runs featured environments with a stable food/poison
quantity from generation to generation.

This experiment compares and contrasts the eventual be-
havior responses, or instincts, that result from exposure to
different environments. In essence, this effect can be charac-
terized as the shaping of instincts by the environment. The
overall champion behaviors of each of the nine environments
were recorded and collectively analyzed.

5.3 Effect of a Dynamic Environment
The final experiment examines how a constantly changing
environment affects behavior evolution. A population of 20
agents was placed in an environment for 5,000 generations.
The addition of 3,000 extra generations allowed enough time
to see any behavioral convergence trends.

A dynamic number of food and poison sources (random in-
tegral powers of 2 between 1 and 512) was assigned in each
generation. A log of the average fitness and best fitness
for each generation was maintained. A comparison of these
statistics between runs with equal food counts (i.e. all gen-
erations with food count 512) was analyzed. The aim of
this experiment was to emulate a constantly-changing en-
vironment and how such a situation affects the behavioral
evolutionary process.

6. RESULTS
Data for each of the experiments were compiled and an-
alyzed. The following section discusses these results and
provides an analysis of each situation.

6.1 Behavior Model Selection
Figure 3 and Figure 4 shows the dominance of the 2-state
behavior model over the rest of the field. It is observed that
the 2-state version has a better overall average and best
fitness and that it converges faster than the other behavior
models.

The 1-state behavior model immediately flattens out, as ex-
pected. The 4-state behavior model performs second-best,
following the trend that less complexity equates to better
fitness values. The 8-state and 16-state models appear to
overlap each other in both best fitness and average fitness.
As a result of this experiment, the remaining experiments
concentrate on implementing the 2-state behavior model.
Figure 5 isolates the data recorded from just the 2-state
behavior model generations.

6.2 Effect of Static Environments
Figure 6 exhibits the best-so-far graph for the second exper-
iment. Figure 7 gives the resulting best behaviors from the
different environmental configurations. It is observed that
each scenario yields its own unique individual behavior. It
is not sufficient to conclude, however, that different envi-
ronments will produce different instincts. Analysis of the
individuals reveals certain trends between agent inputs and
responses. For example, the general trend for responding
to a poison encounter is to either turn or back away - very
rarely does the behavior direct the agent to go forward when
presented with a poison source. A similar trend occurs with
the food encounter, where the equal food and poison scenar-
ios and the plentiful food environments evolve agents that
will intend on eating the food.

The instinctive responses to the agent and wall inputs both
usually results in a turning or a forward progression move-
ment. The forward response would equate to a prevention
of health penalty, since an agent cannot progress into a wall
or onto another grid space occupied by another agent.

An interesting behavior trend is the tendency for the agent
to move backward. This response is most prevalent in the

CAP5512: Evolutionary Computation at UCF, Student Papers, Spring 2007

40

Figure 3: Average fitness for five types of behavior models. It can be seen that the 1-state behavior model
performs relatively poorly, as expected. The 2-state behavior model produces the most effective agents,
taking very little time to converge. The remaining behavior models all reach their convergence points by the
600th generation.

Figure 4: Best fitness for five types of behavior models. As seen in the average fitness graph, the 2-state
behavior model proves most effective of the entire field. The 1-state model remains the control agent, and
the remainder of the behavior models all peaked with best fitness values less than those of the 2-state model.

CAP5512: Evolutionary Computation at UCF, Student Papers, Spring 2007

41

Figure 5: Evolutionary trend for 2-State Behavior Model after 2,000 generations. Almost immediately, all
three curves (average fitness, standard deviation, and best fitness) converge to a linear asymptote. The true
strength of the 2-state model, however, is its superior fitness values over models using larger numbers of
states.

Figure 6: Best-so-far fitness values for nine different environment landscapes. Nine landscapes, defined by
their food and poison counts (10/0, 100/0, 1,000/0, 0/10, 0/100, 0/1,000, 10/10, 100/100, and 1000/1000),
exhibit different best fitness values as well as different convergence trends. The most plentiful food scenario,
1000/0, yielded the best overall fitness and reached this value very quickly. The 1000/1000, equal food and
poison scenario required the longest amount of time to converge toward its best fitness.

CAP5512: Evolutionary Computation at UCF, Student Papers, Spring 2007

42

Figure 7: Best 2-state behavior models for nine different environment landscapes. It can be seen that nine
unique FSM’s were generated after performing this experiment. Each of these behavior models, however,
appears to follow certain general guidelines, such as avoiding moving onto poison and moving toward food.

empty space encounter, yet it is also an evolved response for
food and poison inputs. Moving away from poison seems
quite intuitive, yet moving away from food is not. From
observing these particular agents in the environment, it ap-
pears as though the backward movement serves as a double
right turn (or 180 degree turn) to search for items directly
behind the agent. In fact, a lot of the evolved champion
agents use the backward move as a means to explore its sur-
roundings when food is present, or to use it as the primary
means to consume food items.

6.3 Effect of a Dynamic Environment
In this experiment, 5,000 generations were run, where each
generation was subjected to an environment with randomly
assigned numbers of food items and poison sources. Figure
8 and figure 9 isolate the generations that have 1-unit and
512-unit food quantities, respectively. The generations are
chronologically plotted and their average and best fitness
values were examined. Similar data trends were retrieved
for the remaining food quantity environments.

From each of these graphs, there is no evidence that be-
havioral performance improves during this dynamic envi-
ronment scenario. The instability of the disruption-prone
environment causes the evolutionary process to behave in a
similarly unstable fashion. Essentially, the carried-over best
fit agents from previous generations are rendered useless as
parents for the following, newly generated environment. In
essence, the dynamic nature of the environment causes each
previous population to be as effective as a randomly gener-
ated population.

This experiment reflects some intuitive tenets of genetic al-
gorithms. Since the environment landscape directly relates
to the fitness evaluation of the population, constantly chang-
ing the environment would nullify the perceived fitness of
previous populations. In nature, a similar effect would oc-
cur if the seasons changed on a daily basis. Animal species

would not be able to evolve cold weather and hot weather
behaviors in an efficient manner. In the case of this ex-
periment, the food and poison levels varied so wildly that
the agent populations could not effectively isolate which be-
haviors would be appropriate to pass onto its offspring as
instincts.

7. FUTURE WORK
Improvements for this work would include further develop-
ment of the graphical interface for the artificial life simula-
tion. A real-time visualization of the agent populations in
the environment was envisioned, but not fully realized.

A larger world and different population sizes would be ben-
eficial to create more realistic environments. Another en-
hancement would be to add a third dimension to the en-
vironment landscape. Also, agents may be equipped with
better sensors, allowing them to see a peripheral view of the
landscape, rather than just see what is directly in front.

Additional instincts may also be added, where a predator-
prey agent model could be implemented to develop insight
into the fight-or-flight instinct (a behavior that is closely
related to the feed-or-flee decision).

8. DISCUSSION
From the preceding experimental results, it is shown that a
very simple behavior representation in the 2-state model can
effectively emulate instinctive responses. The larger models,
up to 16 states, appear to require a more complex evolution-
ary process to fully realize their optimal configurations. As
predicted, the single state model proved to be insufficient
for this application. The superiority of the 2-state FSM be-
havior model accentuates the idea that simpler solutions are
often times the better solutions.

In terms of the environment’s effect on behavior evolution,

CAP5512: Evolutionary Computation at UCF, Student Papers, Spring 2007

43

Figure 8: Best fitness and average fitness for all generations with 1 unit of food in a dynamic environment.
No upward convergence patterns could be observed by this data set. The disruptive nature of the dynamic
environment effectively nullifies any best fit individuals from the previous generation.

Figure 9: Best fitness and average fitness for all generations with 512 unit of food in a dynamic environment.
As previously seen, these data points do not convey any remnants of evolutionary improvement due to the
unstable nature of the environment.

CAP5512: Evolutionary Computation at UCF, Student Papers, Spring 2007

44

it is asserted that instinctive behaviors can result from sub-
jecting a species to a stable environment for a prolonged
amount of time. Stability directly refers to the sustainment
of the same environmental factors from generation to gener-
ation. An unstable, ever-changing environment will cause a
species to evolve as if it is always being introduced to a new
environment with each generation. Henceforth, it can be
asserted that an instinctive response system is best evolved
from an environment of predictable and stable factors.

9. CONCLUSION
Ethologists maintain that the evolution of behaviors in a
species results in the existence instincts. This paper exam-
ines the emulation of behavioral evolution in nature as a
means to produce instinctive behavior in an artificial agent.
The two relevant issues involved in this endeavor are: 1) the
proper behavioral representation structure, and 2) the effect
of the external environment upon behavioral development.
Experiments showed that a genetic algorithm that evolved
the simplest behavior representation (a 2-state FSM) could
create an effective set of instincts. Different environment
landscapes results in different instinctive behaviors, although
similarities between input responses were discovered. A dy-
namically changing environment was considered a detriment
to the evolutionary development of instincts. Hence, accord-
ing to this research, evolved behaviors may be perceived as
instinctive if an agent population, with a simple behavior
model, is exposed to a stable environment for a substantial
number of generations.

Returning to the introductory thoughts of this paper, it was
proposed that a generalized behavior set generation method
could replace the hand-crafted agent modeling found in the
today’s modeling and simulation community. The work pre-
sented here suggests a brief step toward that realization,
where the key ingredient to this autonomous agent building
lies in the evolution of simple agents behaviors known as
instincts.

10. ACKNOWLEDGMENTS
This paper was created for partial completion of the Evo-
lutionary Computation course at the University of Central
Florida. Many thanks goes out to the instructor of this class,
Dr. Ivan Garibay.

11. REFERENCES
[1] R. S. Amant, S. P. McBride, and F. E. Ritter. Ai

support for building cognitive models. Proceedings of
the Twenty-First National Conference on Artificial
Intelligence (AAAI, Nectar track), pages 1663–1666,
2006.

[2] I. Brigandt. The instinct concept of the early konrad
lorenz. Journal of the History of Biology, 38:571608,
2005.

[3] D. Eck. A demonstration of the genetic algorithm,
http://math.hws.edu/xjava/ga/, 2001.

[4] L. J. Fogel, P. J. Angeline, and D. B. Fogel. An
evolutionary programming approach to self-adaptation
on finite state machines. Evolutionary Programming,
pages 355–365, 1995.

[5] J. C. Giordano, P. F. Reynolds, and D. C. Brogan.
Exploring the constraints of human behavior

representation. Proceedings of the 2004 Winter
Simulation Conference, pages 912–921, 2004.

[6] J. B. Haldane and H. Spurway. Imprinting and the
evolution of instincts. Nature, 178(4524):85–86, 1956.

[7] J. H. Holland. Adaptation in natural and artificial
systems: an introductory analysis with applications to
biology, control, and artificial intelligence. University
of Michigan Press, 1975.

[8] K. Inoue and H. Kobayashi. Emotion model with
evolution process. Robot and Human Communication,
pages 338–342, 1997.

[9] R. Jones, J. Laird, A. Nuxoll, and R. Wray. Intelligent
opponents for virtual reality trainers. Proceedings of
the Interservice / Industry Training, Simulation and
Education Conference, 2002.

[10] J. R. Kantor. A functional interpretation of human
instincts. Psychological Review, 27:50–72, 1920.

[11] T. E. Portegys. Instinct evolution in a goal-seeking
neural network. The IASTED International
Conference on Computational Intelligence, 2006.

[12] P. Spronck, I. Sprinkhuizen-Kuyper, and E. Postma.
Online adaptation of game opponent ai with dynamic
scripting. International Journal of Intelligent Games
and Simulation, 3(1):4553, 2004.

[13] K. O. Stanley, B. D. Bryant, and R. Miikkulainen.
Evolving neural network agents in the nero video
game. Proceedings of the IEEE 2005 Symposium on
Computational Intelligence and Games (CIG’05),
2005.

[14] N. Tinbergen. Social releasers and the experimental
method required for their study. Wilson Bulletin,
60:6–52, 1948.

CAP5512: Evolutionary Computation at UCF, Student Papers, Spring 2007

45

Learning invariant features in a set of similar
fitness landscapes for speedup

Gautham Anil

Department of Computer Science,
University of Central Florida,
4000 Central Florida Blvd.,

Orlando, Florida-32816

April 12, 2007

Abstract

To increase search performance, domain information is
commonly used to influence the bias of a representation and
evolutionary operators for speedup. However, phenotypic
information about the solution is never used, partly because in
most cases information must be generated manually and thus
is not practical.

We suggest and algorithm which, given a set of similar fitness
landscapes (in the form of fitness functions), is able to extract,
within the limitations of the representation, phenotypic
information common to the landscapes which can be used to
speed up search through a similar unseen landscape. It is also
capable of extracting meta-information regarding searching
through these landscapes.

This algorithm is then put to test on a set of simple landscapes
satisfying the criterion. The information thus gathered is then
used evolve solution of an unseen landscape and relative
performance improvement is measured. The results are
analyzed and conclusions are drawn regarding the
effectiveness of the algorithm.

1 Introduction
An ordinary Genetic Algorithm[1] (GA) starts with a random initial population
and evolves it using evolutionary operators such as mutation and crossover till a
chromosome of required fitness is found. In a GA, it is possible for the scientist
to optimize his representation and the evolutionary operators defined on it so that

CAP5512: Evolutionary Computation at UCF, Student Papers, Spring 2007

46

the search is biased towards the solution (the field of genetic programming[2]).
This means that the scientist tries hard to insert non-evolving meta information
about the fitness landscape into the representation. Here, meta information is any
information that affects the probability of producing chromosome b by
repeatedly applying evolutionary operators on chromosome a (see [3] for a better
explanation).

However, the experiment still starts with a random initial population. This means
that there exists no phenotypic information regarding (the solution of) the fitness
landscape in the initial population. There appears to be good reason behind it
since to manually insert phenotypic information into the initial population is
equivalent to making the search faster by solving a part of the problem in
advance, manually. It clearly defeats the purpose of using computers to evolve
the solution.

Sometimes, a scientist may be interested in only a small domain of problems. It
might be possible that the fitness landscapes of these problems are similar.
Similarity between two fitness landscapes depend upon the landscapes and the
representation. It can be defined in two ways. In the simple case, if the solutions
to the fitness landscapes have common portions in this representation, then the
fitness landscapes can be said to be similar. However, in the hard case, they can
be said to be similar (to a relatively lower degree) even if certain portions of the
solution share biases (see Section 6).

Now, while it may be difficult to manually find phenotypic information, it might
not be too hard to create a representative set of fitness landscapes from the
domain of interest. Let us consider a situation in which we have available a set of
similar fitness landscapes F={F1, ... , Fn} over the same representation. We are
interested in searching through an unknown similar fitness landscape U .

In this case, it might be possible to extract this common invariant information
from the set of know fitness landscapes and use it in the initial population of the
unknown landscape to achieve speedup.

In addition, consider the case where the evolutionary algorithm being used is
able to force the chromosome to optimize meta information that it is capable of
storing. Optimizing of the meta information improves the speed of search. If we
are able to use this optimized meta information in the initial population, search
performance might improve further.

We propose a simple algorithm called the Island Algorithm which given a set of
similar landscapes F is capable of using any ordinary evolutionary algorithm as
a sub-algorithm and extract if possible, phenotypic and meta information about
F and use it to speed up search through an unknown landscape similar to those

in F .

Further, we experiment with the island algorithm with GA as the sub-algorithm
by applying it on a simple F on a simple representation with some evolvable

CAP5512: Evolutionary Computation at UCF, Student Papers, Spring 2007

47

meta information. We then use the information gathered in the initial population
and measure speed up achieved.

2 Island Algorithm
Given : E sub-algorithm

F set of n fitness landscapes

R Representation

1. Create n empty, populations (islands) and store them in I. Mark them
inactive.

2. Mark some of the islands active and initialize them with random
members of R.

3. Do till stopping condition (usually just loop count)

1. For each active I i in I, do E on members I i with fitness function
F i until solution is found.

2. P=∑i

n
I i (add all members of the (active) islands to P).

3. Remove the population of some islands and mark them inactive.

4. Activate some inactive islands. To fill them with chromosomes, select
parents from P (instead of random population).

4. Perform any information extraction procedure necessary on P (usually P
will be used as starting population).

Here, at all times, inactive islands will be empty and no evolution will be
performed on them. At all times at least some of the islands will be active.

3 Experimental Setup

Sub-Algorithm
To run the island algorithm a sub-algorithm is needed. We chose the standard
GA as the sub-algorithm. The detailed configuration of the GA is given in
Appendix A.

Representation
The chromosome was chosen as a sequence of real numbers which act as genes.
In addition, each gene in the sequence was associated with a real number
denoting the probability of this gene being mutated. These real numbers were
chosen from the fixed set {.0001, .0005, .0025, .0125, .0625, .1, .3125} for

CAP5512: Evolutionary Computation at UCF, Student Papers, Spring 2007

48

simplicity. The evolutionary operators on this chromosome were mutation and
crossover.

Mutation started with first deciding whether to mutate mutation rates or the
genes. If the mutation probabilities were to be mutated, then each gene was
individually chosen for mutation based on a meta-mutation probability. If chosen
its mutation probability was randomly either incremented or decremented to the
nearest larger or smaller value respectively from the set of possible mutation
probabilities.

If the gene values were to be mutated, it involved two steps. In the first step, a
gene was chosen with probability proportional to the mutation probability. The
value of this gene was mutated using a Gaussian function. In the second step, for
each gene, based on its mutation probability, a decision was made whether to
mutate it or not. Mutation was performed as before. This ensures that at least one
gene mutates if the mutation function is called.

Crossover is the standard 1-point crossover [1]. The only extension is that the
mutation probabilities are also crossed over along with the genes.

For this experiment, the length of the chromosome was 9.

Set of Fitness Functions
To keep things simple and run-times low, a simple hill climbing fitness
landscape was needed. We used number-match fitness landscape which gave the
hamming distance of the chromosome to a predefined target sequence.

The set of fitness functions consisted of number-match landscapes with different
target sequences. However, all the target sequences shared the first six values.
They differed only in the last three. The last three values were selected randomly
at the beginning of the experiment from the range [-10,10].

Island Algorithm Settings
The island algorithm used 8 islands. At any time, exactly 3 was active. For easy
book keeping, instead of changing islands every time they solved, it was done
every 100 generations of the sub-algorithm. During every island changing step,
exactly 2 islands were chosen for deactivation from the active 3 islands. Then,
exactly 2 islands were chosen for reactivation. Each Island had a population of
30.

4 Experiments and Results

Case 1: As described
When the algorithm was run as described in section 3, it was noted that island

CAP5512: Evolutionary Computation at UCF, Student Papers, Spring 2007

49

algorithm easily detected the similarity among all the first 6 values of all the
evaluators. The population mostly differed only on the last 3 values. However,
the meta information was not as good as hoped. Over successive runs, we found
that there was only a small tendency for the first six genes to have low mutation
probabilities and the last three to have relatively higher mutation probabilities.
The distribution improved if the meta-mutation probability was increased.
However, increasing of the meta-mutation probability reduces the influence of
the mutating probabilities of the final population on the performance over the
unknown fitness landscape. If the values were reduced, and the loop-count at
step 3 set to large values, still the results produced were inconclusive.

Thus, we concluded that the selection pressure applied by the sub-algorithm (GA
in this case) towards optimizing the meta-information in the chromosome is not
strong enough to be able to use the meta-information directly from the final
population.

Case 2: Modified Chromosome and meta-information extraction
To make the effect of selection pressure of GA more prominent, instead of using
a mutation parameter for each gene in the chromosome, only two were used. One
for the first six and the other for the last three. The idea is the since now there are
lesser values to optimize, they might converge better. In addition, instead of
using only these values from the final population, a counter was kept for each
possible mutation probability value for both the probabilities. This is sufficient to
give the complete distribution of values chosen during the entire island
algorithm.

We also kept track of the number of generations an island spent looking for
solution. This was done by cumulatively counting the number of islands which
found solution at every generation of the GA. From this statistic, we find that on
average, an island spends 38 generations looking for solution. Note that there are
3 islands and thus a population of 3 * 30 = 90.

The statistics gathered about the mutation value frequencies are in Table 1.

Mutation Value 0.0001 0.0005 0.0025 0.0125 0.0625 0.1000 0.3125

First-six mut. prob. 6807180 7670765 6054676 3891171 2565015 801005 110095

Last-three mut. prob. 3946 225120 421069 1912844 7466354 6853528 11017046

Table 1: Mutation probability frequencies

Already we can see that first-six spent more time on lower values while last-three
spend more time on higher values. When we take a weighted sum of the mutation
rates, we get,

First-six = 0.0123472541

Last-three = 0.170524441

CAP5512: Evolutionary Computation at UCF, Student Papers, Spring 2007

50

Testing: Standard GA with random initial population
Next, we change the island population size to 90 and total island count to 1
simulating a single GA run. We remove the meta-information from the
chromosome. Gene mutation probability is set to a fixed .1. We start with initial
random population and do 10 runs. We find that the average number of
generations needed to find a solution is 126.7.

Testing: Standard GA with phenotypic information
Here, instead of using initial random population, we use the champion from case
2 having removed the meta-information. Doing 10 runs, we find that the average
number of generations needed is 45.8. This amounts to an improvement of
176%.

Testing: Standard GA with phenotypic and meta-information
Here, we add the meta-information back to the chromosomes. Also, we initialize
the meta information with the values calculated in case 2. Also, the meta-
mutation probability is set to 0 to take full advantage of this mutation
probabilities. We find after 10 runs that the new average number of generations
needed is 34.3. This is 33% increase over phenotypic information only and
270% improvement over standard GA.

Figure 1: Performance in Test Experiments

5 Conclusion
We explain how a scientist while optimizing meta information about the search
space embedded in the representation's bias, is unable to find and use phenotypic
information about the solution.

CAP5512: Evolutionary Computation at UCF, Student Papers, Spring 2007

51

It is suggested that given a set of similar fitness landscapes, we might be able to
find common phenotypic information automatically which could be used to
speed up search for the solution of a similar landscape.

An algorithm is then suggested which uses an existing evolutionary algorithm to
find this common phenotypic information and any meta-information about the
landscape that can be extracted. This algorithm is then applied to a simple case
that satisfies the requirements. The information gathered is then used in a GA
and performances are compared.

It is found that in this application of Island algorithm with GA as the sub-
algorithm, we get notable performance improvement over standard GA. However
note that the exact values of improvement are of no consequence as they can
easily manipulated to a large extent simply by changing the parameters of the
experiment.

What is important is that given a set of similar fitness landscapes, the algorithm
managed to extract some phenotypic and meta information. The increase in other
domains too would largely depend upon the representation used, the similarity of
the fitness functions, the quality and quantity of selection pressure applied by the
sub-algorithm etc.

6 Disadvantages and Future Work
Find an algorithm which applies more selection pressure than the standard GA
on optimizing meta information and integrate this new algorithm into the island
algorithm. Since the island algorithm maintains the population between
successes, enhance the meta information by using this repetitive-success. This is
like using hindsight to make better decisions. Hindsight information is only
available if success is achieved at least once which makes it impossible to use it
in an ordinary evolutionary algorithm.

The island algorithm also needs to be tested on a more difficult set of fitness
landscapes with less intuitive invariant information.

The island algorithm as such is able to detect common phenotypic information
only if they are the same. If they are only close, say in the range of 4 to 6, the
algorithm will not decide on 5 which is the optimal phenotypic information. It
will instead present the last seen value. This means that the island algorithm
requires F to satisfy the simple similarity requirement. It is to avoid this “last-
seen” effect that the island algorithm has multiple islands active at a time. But as
such they alone are insufficient to encourage such optimal behavior. Thus,
modifications must be researched to enable it to extract optimal phenotypic
information even with different but similarly biased values. In other words,
enable it to extract phenotypic information even if F satisfies only the hard
similarity requirement.

At the moment, the island algorithm can only work with representation with

CAP5512: Evolutionary Computation at UCF, Student Papers, Spring 2007

52

fixed length. This means that the dimensions are named. The algorithm needs to
be improved to handle unnamed dimensions.

7 Appendix A – GA (Sub-Algorithm) Configuration
Population size 30 (Island size)

Selection criterion Tournament (k = 2)

Probability of mutating 1 (Every member has been mutated)

Probability of crossover 1 (Every member is product of crossover)

Mutation type Gaussian (σ = .1)

Elitism None

8 References
[1] Holland, John H , Adaptation in Natural and Artificial Systems, University of

Michigan Press, Ann Arbor, 1975

[2] J. R. Koza. Genetic programming: A paradigm for genetically breeding computer
population of computer programs to solve problems. MIT Press. 1992.

[3] Toussaint, M. Demonstrating the evolution of complex genetic representations:
An evolution of artificial plants. In: 2003 Genetic and Evolutionary Computation
Conference (GECCO 2003). (2003)

CAP5512: Evolutionary Computation at UCF, Student Papers, Spring 2007

53

Optimal Design and Rehabilitation of Water Distribution
Networks using Evolutionary Computation Algorithms: a

Literature Review
Abhishek Das

Dept. of Civil and Envr. Engg.
University of Central Florida.

214 Engineering Building 2, University
of Central Florida

Orlando, FL 32816-2450
Phone: 001-407-823-1056

abhishekdas.das@gmail.com

ABSTRACT
In this paper we discuss the work done in the field of optimal
design and rehabilitation of water distribution networks (WDNs)
using evolutionary computation (EC). WDNs form a vital part of
infrastructure, constructed to satisfy water demand at
consumption points (nodes). The system must also satisfy
pressure requirements at the given nodes. With the passage of
time the existing WDNs will degrade in performance and need to
be rehabilitated. With growth in demand new WDNs become
necessary and old ones need to be extended. Conventionally the
design of new WDNs or the up gradation of the existing ones had
been done on the basis of engineering judgment. Though the
requirement of engineering judgment is still essential, new
computation tools augment the work of the engineers to a great
extent. Optimizing the WDNs is not a small task, as the
complexities are many and effort is always on to find new
algorithms to optimize the design or rehabilitation work. Here we
will be specifically discussing the use of evolutionary algorithms
(EA) that have been used in the field to augment the engineer.
The discussion presented here is a qualitative comparison.

Note: The references list contains only those that are cited in
the text, numbered in the order in which they are first cited.

Keywords
Water distribution networks, evolutionary algorithms, cost
minimization, reliability maximization.

1. INTRODUCTION
WDNs form a vital part of infrastructure, constructed to satisfy
water demand at consumption points called nodes. The system
must also satisfy pressure requirements at the given nodes. With
the passage of time the existing WDNs will degrade in
performance and need to be rehabilitated. With growth in demand
new WDNs become necessary and old ones need to be extended.
Conventionally the design of new WDNs or the up gradation of
the existing ones had been done on the basis of engineering
judgment. Though the requirement of engineering judgment is
still essential, new computation tools augment the work of the
engineers to a great extent. Optimizing the WDNs is not a small
task, as the complexities are many and effort is always on to find
new algorithms to optimize the design or rehabilitation work.

Earlier traditional optimization methods were used for the
purpose, but problems like handling of discrete decision variables,
getting trapped in local optima led researchers to the use of EAs.
The EAs can handle not only discrete variable optimization but
are also capable of not falling at deceptive points. They are robust
and can explore the entire search space in lesser time than any
traditional optimization or search process. The late 1990’s saw the
use of EAs in the field of water resources engineering and since
then various EAs have been tried and tested successfully.

 In section 2 we will be discussing about the uncertainties and
what objective functions are sought to be optimized in any water
distribution network design problem. Section 3 will be dedicated
to the discussion of why EAs are better at handling the problem
than the earlier methods. Section 4 will include the discussion the
various EAs used. Section 5 will be the conclusion.

2. UNCERTAINTIES AND THE
OBJECTIVE FUNCTIONS
A typical WDN consists of pipes laid out, with constraints of
existing roadways and buildings. Finding the shortest path to a
certain node from the source of water is not always possible and
is actually never the goal. The aim is more or less always to find
the least cost design [1] layout keeping in view the demand at all
the points. The pressure demands through out the system have to
be maintained also. And also not forget we have the crucial
uncertainties [2, 3]. The uncertainties are generally of the
following types: 1) hydraulic uncertainty, 2) mechanical
uncertainty, 3) demand uncertainty and 4) hydrologic uncertainty.
Hydraulic uncertainty pertains to demands not being met at
certain nodes because of the long distance from the source or
being at a higher elevation than the source. Though we cannot do
much about the source of the water but we can definitely take
action in the form of putting in pumps at the right places. So that
the when the pressure drops significantly at places due its location
or distance, we can ensure reliability. Due to hydraulic
uncertainty though the demand is satisfied at all times, some of
the nodes are not served. Mechanical uncertainty could arise due
to any sort of mechanical failure in the system like the breakage
of pipes, bursting of valves or breakdown of pumps. Mechanical
uncertainty leads to the condition in which demand is satisfied at
all nodes but not at all the times. Demand uncertainty rises due to
various causes like sudden rise in the population of a particular

CAP5512: Evolutionary Computation at UCF, Student Papers, Spring 2007

54

region which is in turn related to increase in business in that
particular region. This could also be if the forecast has not been
very properly modeled. Hydrologic uncertainties are owing to
problems at the source of the water, e.g. less than average rainfall
can lead to a reduced amount of water available in the dry period.
Though supply can be available at all times to all nodes but the
demand will not be satisfied. So keeping in mind that we have
these kinds of uncertainties plaguing us all the time for which we
have limited control, the design or the rehabilitation work should
be able to take into account the above mentioned uncertainties
and make the system reliable. Resilience [4] is the ability of the
system to come back to its normal state after a momentary or brief
departure. So network resilience [5] could be a good measure of
the reliability of the system, which is one of our objectives. But
since WDNs are expensive infrastructure, the finding of a least
cost design is but an inevitable objective for most of the cases
under study. While optimizing these objective functions the usual
equations of the conservation of flow and energy has to be
satisfied. The flow equation to be satisfied is that the difference in
the amount of water flowing into a node from nearby links and
the amount of water going away from the node is equal to the
demand at the particular node. The pressure constraint that has to
be satisfied is that there must be a minimum pressure head at the
node. A pressure violation is said to occur when the pressure
drops below the minimum.

3. WHY EVOLUTIONARY
ALGORITHMS?
Traditional optimization methods have earlier been used for the
design of WDNs before the use of evolutionary algorithms
became popular. And with the advent of faster computers
intensive computations was no longer an issue to be considered.
But the old methods of optimization had some serious drawbacks.
The system under consideration is non-linear and the old
techniques rely heavily on linear simplification, which though
makes the calculation simpler leads to unacceptable results. It also
assumes that the system is deterministic but where as it is not. In
the problem at hand diameter of pipes that are to be laid out are
the decision variables in most cases. Since they are manufactured
in large numbers and themselves are expensive units, they are
only produced in certain sizes. In other words the decision
variables are discrete variables. Old methods could not handle
discrete variable. They treated the decision variables as
continuous and the results would always have to be rounded off to
the closest available discrete pipe size. This can lead to not only
sub-optimal solutions but also to infeasible solutions. An
infeasible solution is one where the constraints are violated. When
multiobjective optimization is attempted multiple solutions cannot
be found in one run [5]. So we need to have multiple runs for
obtaining multiple solutions and also there is no guarantee that
varied solutions will be obtained. Some traditional methods also
cannot model the use of pumps, valves and storage tanks which
are very important components of the WDN [6].

EAs like genetic algorithm (GA) or memetic algorithm have the
advantage of being able to handle discrete variables. It does not
matter whether the system is linear or non-linear. The ability to
represent solutions which can be mapped to real-life situations,
play around with the solutions, evaluate them as we go based on
certain fitness function is the key to the robustness of the GA [7]
or more generally EA. And single run with enough number of

generations so as to allow for convergence to take place is
sufficient to give solutions for multiobjective functions. EAs
which are stochastic tend to provide better solutions for water
distribution systems which throw light on the nature of the
problem itself. They can very efficiently handle pumps, valves
and storage tanks. They have been proved to have performed
better than deterministic optimization techniques [8] in the
optimal design of WDNs.

But it is also to be noted that EAs are also not great at handling
constraints. So in all the cases the constraints are solved by an
external hydraulic network solver [9]. The network solver takes
solutions evaluated by the EA and then sees if the solution is
feasible or not. It gives the feedback then back to the EA. This
feedback is crucial because in most cases a penalty function is
evaluated based on whether the constraints have been evaluated or
not. This penalty value is then included in the computation of the
fitness value of the solution.

4. EVOLUTIONARY ALGORITHMS USED
IN THE DESIGN OR REHABILITAION OF
WATER DISTRIBUTION NETWORKS
The various EAs that have been used in the given field problem
will now be discussed. The goal of the project here has been to
understand the various EAs implemented and how effective they
have been in comparison to other algorithms. One of the short
comings that we have observed here is that some researchers
come up with certain modifications to the simple GA and try to
beat it down. But in certain cases the authors have tried to
improve upon modified GA. This is kind of interesting to study as
it sort of exposes the delicate aspect of the algorithm. Through out
the study we realized how difficult it is to get a perfect
optimization technique for a real world problem. In these high
dimensional problems there is always scope for improving the
optimization technique and this is precisely what has happened in
the given cases under study. Researchers have used the simplest
of the evolutionary algorithms to the relatively more difficult
concepts of evolution to optimize the networks.

The various EAs to be discussed in the following subsections are
the following: 1) Single objective GA, 2) multiobjective GA, 3)
hybrid GA, 4) messy GA, 5) Ant System Algorithms, 6) Shuffled
Complex Algorithms.

The New York City water system and the Hanoi Network are the
two classical networks in literature. They have been tried and
tested on each and every type of algorithm discussed in the
following sections. The use is primarily because they have been
traditionally benchmark problems. So it makes more sense to
compare the results of the new algorithms with the older ones. In
addition to that the complexity of the networks is high but not too
high. So dealing with these networks gives enough challenge and
computational ease at the same time.

4.1 Single objective genetic algorithm
Most of the initial work of the application of EA in this field has
been the implementation of the single objective GA. The
objective most of the time has been to minimize the cost, except
for few like [10], where reliability is the sole objective to be
optimized. When the goal is single objective it is argued that
resulting structure of the WDN will be more tree-like. This could

CAP5512: Evolutionary Computation at UCF, Student Papers, Spring 2007

55

be explained in very simple terms as follows. If we consider
reliability then that means that we have to have loops in the
system which will be redundant and will only come into picture
during the failure conditions and help in the system resilience. But
if only cost minimization is the goal then those extra loops no
longer come into the picture and the developed structure is more
tree-like [1]. The representation has been binary [11] as well as
real. The problems with the binary representation have been
discussed by [12] and the researchers have advocated the use of
the real coding to be used for representation. The binary
representation is very easy to understand but has the problem of
the Hamming cliff effect [13]. So some authors have used Gray
coding [1] instead of the binary code to overcome the problems.
Real coding sorts out the problem of redundancy associated with
binary coding. It also allows for more variety of combination and
mutation operations to be implemented [14]. As mentioned earlier
a penalty function is included to account for pressure infeasible
solutions. The fitness function is directly proportional to the
reliability and is inversely proportional to the cost of the system.
For reliability maximization problems it has been observed that it
is better to look at the network reliability rather than critical node
reliability [10]. In the latter case there is an inherent problem of
over estimating the network reliability.

4.2 Multiobjective genetic algorithm
In a typical implementation of the multiobjective GA in the
design of WDN, we observe that cost minimization and reliability
maximization are the two goals. These two goals intuitively tend
to play against each other. But it has been shown that
simultaneous optimization of the cost and reliability resulted in
high quality solutions (Parerto Fronts) and also inclusion of a
third objective e.g. minimum surplus pressure head also improves
the solutions [15]. [4] have used non-dominated sorting algorithm
(NSGA) for optimizing the two objectives. In NSGA a ranking
method is used to emphasize current non-dominated and a sharing
parameter is used to maintain diversity in the population.
Crossover and mutation are carried out. Selection of parents from
different non-dominated fronts is done by tournament selection.
SPEA which includes elitism has been shown to perform much
better than NSGA [16]. The developers of NSGA came up with
NSGA-II which was an improvement on the original [17]. They
decreased the complexity, introduced elitism and did away with
the sharing parameter. This elitist MOEA was tried by [18] on
two classical literature networks. [19] tried NSGA-II and Strength
Pareto evolutionary algorithm 2 (SPEA2) on two classical
networks. They found that though both generated Pareto sets but
had incomplete solutions, thus were suboptimal. SPEA2
performed slightly better. The result is interesting as it shows that
lot of work has to be done to locate optimal Pareto sets for high
dimensionality objective spaces.

[20] & [21] have used multiobjective approach for cost
minimization and energy savings in water supply by improving
the operations of the pumps. Earlier it was not possible to
optimize the performance of pumps using traditional optimization
methods. But as we had mentioned earlier the optimization of
pumps has been achieved successfully by multiobjective GA.

4.3 Hybrid genetic algorithm
The concept of hybrid GA is to use the “best of both worlds”.
Local search methods are good at converging to optimal solutions
quickly using the gradient information, but are not able to jump
around. Thus they get trapped in the local optima [22]. GA on the
other hand becomes less efficient when they find the near optimal
solutions. A hybrid GA thus combines a local search with a GA.
Based on the particular optimization problem under study it is
decided as to how to combine the both. They are generally
classified as two methods: the sequential global – local method
and the embedded global – local method [23]. In the first stage of
the sequential global – local method the GA is implemented to
give us the near global optimal solution. Then the local optimizer
takes the initial estimate and searches for the global optimum in
the region of the near global solution. The embedded global –
local method is an iterative process between the search operators
of the global optimizer and the local optimizer. In some problems
like in the case of two way pipe flow [23] there are complicating
variables. The global optimizer is used to take care of the
complicating variable and then the local optimizer is used to
resolve the rest. Convergence to global solution is reached
through iterations. In both the above methods the solutions are
achieved much faster than the GA used alone and also results in
some studies find that they give better solutions than the simple
GA.

Now we will be discussing about another type of hybrid GA
whose foundations is based on a different aspect of GA. GA
begins with a randomly generate solution set and then after lot of
generations of fitness evaluations comes up with the best
solutions. Though a bad start doesn’t imply bad solution, but it
may affect the optimality. Bad start sometimes hinders the search
for the global best [24]. This could be because we do not have any
prior knowledge of the environment and if we could get that
information before starting the process then it is believed that
better solutions could be achieved. Cellular Automata (CA) has
been widely applied to spatially distributed problems like
simulations of traffic flows. A CA consists of interconnected set
of nodes that uses certain rules to update the state of the nodes.
The rules are problem dependent and updates are done in parallel.
The CA is only concerned with implementation of rules at the
local level. CA has features like parallelism, localist
representation and homogeneity [25] and can reach close to
Pareto optimal solutions in small number of simulations. Then the
results of the CA can be used to seed some GA e.g. NSGA-II,
which can reach global optimum [26]. The method is kind of
reverse of the sequential global – local method. Here the local
optimizer works first and then the global is used.

The hybrid GA has been used for both single and multi objective
functions optimizations.

4.4 Messy genetic algorithm
It is based on the concept that the best solution will be found in
the solution region containing a high proportion of good solutions.
The simple GA has fixed length strings. The messy GA has
variable length strings that grow over generations. Not only have
they grown over generations, but they also have different lengths
in a given populations giving it a messy look and hence the name.
This versatile string length is the key to the messy GA [9]. The
variable length string along with the cut and splice operators helps

CAP5512: Evolutionary Computation at UCF, Student Papers, Spring 2007

56

in identifying good clusters of string bit patterns that are
contained in good solutions. The genes are identified as a pair of
gene locus and gene value. Gene locus is the sequential order of a
gene bit in the full length string. The messy GA imitates the
evolutionary process in two nested loops. Each cycle in the outer
loop calls upon an initialization phase and an inner loop that has a
building block filtering phase and a juxtaposition phase. The
larger the population size the higher is the chance that all possible
good building blocks will be present. The building block filtering
process identifies better fit shorter strings and randomly deletes
genes and is done till a desirable length is reached. In the
juxtaposition phase the resulting strings of the building block
filtering phase are combined to form new strings. The cut and
splice operators are called during this step and helps in splitting or
combining strings. The cut probability is higher for string of
longer length. In the early stages of the juxtaposition phase the
probability of the splice operator to be called is higher as the
strings are of shorter lengths. Cut and splice operator when called
upon to act on two strings of same length in succession may act
like a crossover operator. So this shows that cut and splice
operator have more versatility than the standard operators. Due to
these features of the messy GA they have been found to perform
better than the fixed length GA in standard networks.

The structured messy GA used by [27] and [28] partially uses the
capability of the messy GA. In these the string length grew only
over the generations so there was no messy population. This
allowed for the use of the standard crossover and mutation but
could not use cut and splice operators. So the features which
made messy GA more powerful were not used. So they could not
be as efficient as the messy GA.

The messy GA and the structured messy GA have been used
typically for cost minimization purpose.

4.5 Ant system algorithms
Ant colony optimization (ACO) is a probabilistic optimization
technique developed for solving computational problems which
can be reduced to finding good paths through graphs. The ant
algorithm for discrete optimization was developed by [29]. They
are inspired by the foraging activity of the ants in finding paths
from the home to food and back. In the real world ants travel
randomly and after they find food they return home by laying
down pheromone trails. Other ants who find the trail will no
longer travel randomly but instead follow the trail to find food.
The in turn will also lay pheromone trails thus reinforcing the
path. The pheromone evaporates with time, so longer paths will
have reduced attractiveness in comparison of shorter paths. This is
nature’s own way of preventing stagnation or in other words
preventing traps at local optima. In ACO the behavior of real ants
is mimicked with simulated ants. The ACO is nested loop
algorithm with the outer iteration equivalent to the generation of
GA. The inner cycle is equivalent of the evaluation of solutions in
GA. Number of cycles is also the number of ants generated. The
ACO process is governed by the ground pheromone intensity.
Since each solution is a trial solution the pheromone is updated
after each cycle. The iterations or the outer loop continue till a
stopping criterion is reached. The stopping criterion for the given
problem at hand is that the demand at all nodes must be satisfied
at all the times [30]. The ACO was found to be performing better
than the standard GAs in terms of faster convergence to global

optimal solution. In the ACO the pheromones are laid on the
ground and the ants are just to make decisions as to where to go
next after they reach a certain point. So we see that changes are
actually made to the environment and thus they become powerful
optimization tools in dynamically changing problems like the
WDNs. Rank based updating scheme implemented ACO and Max
– Min Ant System (MMAS) also appear to perform better than the
basic ACO [31]. Iteration best Ant System also performs better
[32]. The authors have also suggested modifications to parameters
so that performance improves. MMAS have a dynamically
developing bound on the pheromone trail intensity such that they
remain within certain limits of the path with the greatest
pheromone intensity. This gives each path a non-trivial
probability of being selected and thus allowing greater search
scope [33].

Primarily the algorithms have been tested on single objective
functions, in this case cost minimization.

4.6 Shuffled complex evolutionary algorithm
The shuffled complex algorithm starts of with the combination of
probabilistic and deterministic approaches, evolution of complex
solutions, competition and complex shuffling. A population is
randomly generated and is sorted in ascending order. The
population is then partitioned in to complexes. Each complex is
allowed to develop independently. Points within a complex
produce new offspring which then replace the worst fit. The
points in the evolved complexes are pooled together and then
shuffled again. This shuffling causes the information to be shared
among every member [34]. This is memetic evolution. The
shuffling goes on till a terminating criterion is achieved. The
criteria could be a pre-specified number of function evaluations or
could be that the relative change in the function evaluation in the
last m shuffling loops the value is within a tolerance level. The
implementation of the above algorithm in WDN performed better
than simple GA and some other Shuffling Algorithms. A serious
disadvantage is that this algorithm cannot handle discrete
variables.

Shuffled Frog Leaping Algorithm (SFLA) is very similar with a
few changes [35]. In the former there was generation of new
points which replaced some worst fit points. In the latter PSO is
used for the local search inside a complex and the sorting is dome
in descending order. Inside the complex in the SFLA the position
of the worst frog is tried to be improved, where is in the simple
shuffling algorithm reproduction takes place and the worst fit is
removed. The SFLA can handle discrete variables. The algorithm
is named so after the fact that frogs leap from one stone to other
in a pond to get to the food and they communicate with each other
to get the information about food. When the local performance
cannot be further improved the complex shuffle. The process of
shuffling is analogous to the set of cultures that were working
isolated and now meeting and exchanging ideas. Stopping criteria
are same as the simple shuffled algorithm. SFLA was found to
perform better than traditional optimization techniques.

Shuffled complex algorithms have been used as single objective
function optimizer in the WDNs design.

CAP5512: Evolutionary Computation at UCF, Student Papers, Spring 2007

57

5. CONCLUSION
So far as we have studied the broad categories of EAs that have
been used in the design of WDNs and realized that all of them
have improved the design and search for the optimal solution. A
quantitative comparison is beyond the scope of this work as it is a
literature review. Since WDNs are costly infrastructures
minimizing the cost is a by default objective. Apart from that
maximizing the network reliability has been a major goal.
Operation work like pump scheduling sometimes come up as an
objective, but very rarely. Water quality as an objective also
appears but again rarely. Single objective GA and multi-objective
GA are the ones most commonly used as hey have been tried ad
tested for longer period of time than others. The use of messy GA
for serious optimization purpose has gained in recent years not
only in the design of WDNs but also in other vast areas of applied
GA. Messy GA with their variable string length feature and use of
operators like cut and splice have lead to faster convergence in
solutions. Based on the concept that global best solution will be
found near the neighborhood of the region of relatively higher
proportion of good solutions, the messy GA have proved very
effective. Hybrid GA gives us the unique capability of using the
best of both the local and the global search optimizers for the
purpose of converging to the best global solution. The hybrid GA
is useful in optimizing water quality and cost. Ant system
algorithms have taken ideas from ants’ foraging activity and have
been shown to be very useful in the design of WDNs. The ant
system algorithms make changes in the environment and not in
the trial solutions itself. This makes it useful to tackle
dynamically changing environments. This permits the researcher
to model occurrences like real time pipe breakage or pump failure
much easier. The ant algorithms used here are especially designed
for discrete optimization. Shuffled complex algorithms though
have proved to be efficient, yet they have not been used that
extensively.

6. ACKNOWLEDGMENT
Would like to thank Dr. Ivan Garibay for his excellent advising
and teaching, without which the understanding of the EAs would
have been a tougher road.

7. REFERENCES
[1] Savic, D. A. and Walters, G. A. Genetic Algorithms for the

Least-Cost Design of Water Distribution Networks. Journal
of Water Resources Planning and Management, Vol. 123,
No. 2, pp. 67-77, 1997.

[2] Bhave, P. R. Optimal Design of Water Distribution Network.
Tata – McGraw Hill, 2003.

[3] Lansey, K. Uncertainty in Water Distribution Network
Modeling. Journal of Contemporary Water Research and
Education, Universities Council on Water Resources, Issue
No. 103, 1996.

[4] Todini, E. Looped water distribution networks design using a
resilience index based heuristic approach. Urban Water,
Vol. 2, No. 2, pp. 115-122, 2000.

[5] Prasad, T. D. and Park, N. S. Multiobjective Genetic
Algorithms for Design of Water Distribution Networks.
Journal of Water Resources Planning and Management, Vol.
130, No. 1, pp. 73-82, 2004.

[6] Simpson, A. R., Dandy, G. C. and Murphy, L. J. Genetic
Algorithms Compared to Other Techniques of Pipe
Optimization. Journal of Water Resources Planning and
Management, Vol. 120, No. 4, pp. 423-443, 1994.

[7] Goldberg, D. E. Genetic Algorithms in Search, Optimization,
and Machine Learning. Addison – Wesley Publishing
Company, Inc., 1989.

[8] Gupta, I., Gupta, A. and Khanna, P. Genetic algorithm for
optimization of water distribution systems. Environmental
Modeling & Software, Vol. 14, pp. 437-446, 1999.

[9] Wu, Z. Y. and Simpson, A. R. Competent Genetic-
Evolutionary Optimization of Water Distribution Systems.
Journal of Computing in Civil Engineering, Vol. 15, No. 2,
pp. 89-101, 2001.

[10] Tolson, B. A., Maier, H. R., Simpson, A. R. and Lence, B. J.
Genetic Algorithms for Reliability-Based Optimization of
Water Distribution Systems. Journal of Water Resources
Planning and Management, Vol. 130, No. 1, pp. 63-72, 2004.

[11] Goldberg, D. E. Computer-Aided Pipeline Operation using
Genetic Algorithms and Rule Learning. PART I: Genetic
Algorithm in Pipeline Optimization. Engineering with
Computer, Vol. 3. No. 1, pp. 35-45, 1987.

[12] Vairavamoorthy, K. and Ali, M. Optimal Design of Water
Distribution Systems Using Genetic Algorithms. Computer-
Aided Civil and Infrastructure Engineering, Vol. 15, pp. 374-
382, 2000.

[13] Goldberg, D. E. Real-Coded Genetic Algorithms, Virtual
Alphabets and Blocking. Complex Systems, Vol. 5, 1991.

[14] Beasley, D., Bull, D. R. and Martin, R. R. An overview of
genetic algorithms: 2. Research topics. University
Computing, Vol. 15, No. 4, 1993.

[15] Farmani, R., Walters, G. A. and Savic, D. A. Trade-off
between Total Cost and Reliability of Anytown Water
Distribution Network. Journal of Water Resources Planning
and Management, Vol. 131, No. 3, pp. 161-171, 2005.

[16] Zitzler, E., Deb, K. and Thiele, L. Comparison of
Multiobjective Evolutionary Algorithms. Evolutionary
Computation, Vol. 8, No. 2, pp. 173-195, 2000.

[17] Deb, K., Pratap, A., Agarwal, S. and Meyarivan, T. A Fast
and Elitist Multiobjective Genetic Algorithm: NSGA-II. IEEE
Transactions on Evolutionary Computation, Vol. 6, No. 2,
2002.

[18] Formiga, K. T. M., Chaudhry, F. H., Cheung, P. B. and Reis,
L. F. R. Optimal Design of Water Distribution System by
Multiobjective Evolutionary Methods. Proceedings of the
Evolutionary/Multi-Criterion Optimization: Second
International Conference, Faro, Portugal, 2003.

[19] Farmani, R., Savic, D. A. and Walters, G. A. Evolutionary
multi-objective optimization in water distribution network
design. Engineering Optimization, Vol. 37, No. 2, pp. 167-
183, 2005.

[20] Savic, D. A., Walters, G. A. and Schwab, M. Multiobjective
Genetic Algorithms for Pump Scheduling in Water Supply.
Selected Papers from AISB Workshop on Evolutionary
Computing, pp. 227-236, 1997.

CAP5512: Evolutionary Computation at UCF, Student Papers, Spring 2007

58

[21] Baran, B., Lucken, C. V. and Sotelo, A. Multi-objective
pump scheduling optimization using evolutionary strategies.
Advances in Engineering Software, Vol. 36, No. 1, pp. 39-
47, 2005.

[22] Zyl, J. E. V., Savic, D. A. and Walters, G. A. Operational
Optimization of Water Distribution Systems Using a Hybrid
Genetic Algorithm. Journal of Water Resources Planning and
Management, Vol. 130, No. 2, pp. 160-170, 2004.

[23] Tu, M. Y., Tsai, F. T. C. and Yeh, W. W. G. Optimization of
Water Distribution and Water Quality by Hybrid Genetic
Algorithm. Journal of Water Resources Planning and
Management, Vol. 131, No. 6, pp. 431-440, 2005.

[24] Keedwell, E. and Khu, S. T. A hybrid genetic algorithm for
the design of water distribution networks. Engineering
Applications of Artificial Intelligence, Vol. 18, pp. 461-472,
2005.

[25] Keedwell, E. and Khu, S. T. Novel Cellular Automata
Approach to Optimal Water Distribution Network Design.
Journal of Computing in Civil Engineering, Vol. 20, No. 1,
pp. 49-56, 2006.

[26] Keedwell, E. and Khu, S. T. A novel evolutionary meta-
heuristic for the multi-objective optimization of real-world
water distribution networks. Engineering Optimization, Vol.
38, No. 3, pp. 319-336, 2006.

[27] Halhal, D., Walters, G. A., Ouazar, D. and Savic, D. A.
Water Network Rehabilitation with Structured Messy Genetic
Algorithm. Journal of Water Resources Planning and
Management, Vol. 123, No. 3, pp. 137-146, 1997.

[28] Halhal, D., Walters, G. A. and Ouazar, D. Structured Messy
Genetic Algorithm Approach for the Optimal Improvement of
the Water Distribution Systems.

[29] Dorigo, M. and Caro, G. D. Ant Algorithms for discrete
optimization. Artificial Life, Vol. 5, pp. 137-172, 1999.

[30] Maier, H. R., Simpson, A. R., Zecchin, A. C., Foong, W, K.,
Phang, K. Y., Seah, H. Y. and Tam, C. L. Ant Colony
Optimization for Design of Water Distribution Systems.
Journal of Water Resources Planning and Management, Vol.
129, No. 3, pp. 200-209, 2003.

[31] Maier, H. R., Simpson, A. R., Zecchin, A. C., Leonard, M.
and Nixon, J. B. Ant Colony Optimization Applied to Water
Distribution System Design: Comparative Study of Five
Algorithms. Journal of Water Resources Planning and
Management, Vol. 133, No. 1, pp. 87-92, 2007.

[32] Zecchin, A. C., Simpson, A. R., Maier, H. R. and Nixon, J.
B. Parametric Study for an Ant Algorithm Applied to Water
Distribution System Optimization. IEEE Transactions on
Evolutionary Computation, Vol. 9, No. 2, pp. 175-191.

[33] Zecchin, A. C., Maier, H. R., Simpson, A. R., Berrisford, M.
J. and Leonard, M. Max-Min Ant System Applied to Water
Distribution System Optimization. Online Proceedings of
MODSIM 2003 International Congress on Modeling and
Simulation, 2003.

[34] Liong, S. Y. and Atiquzzaman, M. Optimal Design of Water
Distribution Network Using Shuffled Complex Evolution.
Journal of the Institution of Engineers, Singapore, Vol. 34,
No. 1, 2004.

[35] Eusuff, M. M. and Lansey, K. E. Optimization of Water
Distribution Network Design Using the Shuffled Frog
Leaping Algorithm. Journal of Water Resources Planning
and Management, Vol. 129, No. 3, pp. 210-225, 2003.

CAP5512: Evolutionary Computation at UCF, Student Papers, Spring 2007

59

	intro.pdf
	Preface

	Kelly.pdf
	1.INTRODUCTION
	2.GAME THEORY IN COEVOLUTION
	2.1 Problems in Coevolution
	2.2 Game Theory

	3. Numbers Game
	3.1 Intransitive Numbers Game
	3.2 Focussing Game
	3.3 Compare on One

	4. Nash Memory
	4.1 Description
	4.2 Linear Programming (SIMPLEX)

	5.Experimentation Tool and Software Design
	6. Experiments
	7.Focused Nash Memory
	8.Conclusions and Future Work
	9.REFERENCES

	phillip.pdf
	vaiciulis_final.pdf
	1. INTRODUCTION
	2. BACKGROUND
	4. DESCRIPTION OF DATASETS
	4.2 Email Spam Dataset

	5. EXPERIMENTS AND RESULTS
	5.1 Interval-scale Predictors Only
	5.2 Addition of Transformations
	5.3 Addition of Nominal-Scale Predictors

	6. CONCLUSIONS
	7. ACKNOWLEDGMENTS
	8. REFERENCES

	tommyreport.pdf
	Introduction
	Overview of the Paper

	Procedure
	Experimental Parameters

	Results
	Run 1
	Run 2
	Run 3
	Run 4
	Run 5
	Run 6
	Run 7

	Conclusions
	References

	victorhung_paper_revision.pdf
	anil.pdf
	ADas.pdf

