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Focused Nash Memory for Coevolution
Kevin M. Kelly

University of Central Florida

CAP 5512
Spring 2007

kkelly_1138@yahoo.com
ABSTRACT
Coevolutionary  algorithms  have  various  problems  when  used. 
One  of  these  known  problems  is  that  of  forgetting.   This  is 
especially  true  for  intransitive  problems.   Sevan  G.  Ficici  [1] 
proposed a memory mechanism to solve this problem using the 
game theory principle of Nash Equilibrium.  This paper expands 
on  that  work  and  looks  at  ways  to  focus  the  “Nash  Memory” 
mechanism as well as exploring it's uses with other game types.

1.INTRODUCTION
The  use  of  game  theory  principles  to  assist  coevolution  has 
become popular in recent years.  It is seen as a way to help solve 
some of  the  problems  traditionally  associated  with  coevolution 
(specifically competitive coevolution.)  

2.GAME THEORY IN COEVOLUTION
2.1 Problems in Coevolution

When people first started to look into competitive coevolution, it 
was seen  as  something  of  a  silver  bullet  to  solve evolutionary 
algorithms.  One problem evolutionary algorithms has always had 
was in  defining  the  fitness  function.   Coevolution  promised  to 
have  an  ever  adapting  fitness  function  that  didn't  need  to  be 
defined  specifically.   By  competing with  the  others  in  the 
population  (or  another  population),  the  system could  generate 
better  and  better  fitness  functions  automatically  and  create 
something of an  arms race.   Unfortunately,  the early optimism 
was  replaced  with  frustration  as  common  problems  began  to 
develop.  

One of these things is known as the “Red Queen Effect.”  This 
describes  a  situation  where  an  individuals  objective  fitness 
(fitness across the broader fitness landscape) could increase, but 
in the ever changing fitness environment the individual finds itself 
in, that doesn't actually improve it's chances for selection.

Another  problem  in  coevolution  is  known  as  mediocre  stable 
states.   This  is  a  problem that  occurs  when  there  is  a  lack of 
definition or driving force.  It is often an unexpected state where 
the individuals in the population get to a position where moving 
from their causes problems, and so it becomes stable, but it is an 
undesired state.

Cyclic dynamics is another typical coevolution problem.  Cyclic 
dynamics are a direct result of the dynamic nature of the fitness 
landscape.  At times, one strategy is good, but as that becomes 
dominant,  a different strategy becomes better.   As that strategy 
becomes dominant, the original strategy could become dominant 
again  causing  a  non-stop  cycle  of  strategies  with  no  ability  to 
search for better ones.

Related to cyclic dynamics is the principle of forgetting.  As the 
fitness landscape changes, traits that may be needed later are lost. 
This could be from cyclic dynamics or drift.  Drift is when a trait 
does  not  distinguish  it  from  a  fitness  perspective  from  other 
individuals  and  therefore  can  stay or  be  removed  without  any 
pressure from the system.  The problem comes when this trait is 
then needed later and needed to be completely relearned.

2.2 Game Theory

Game theory recently has become popular to address some of the 
issues in coevolution  because the same problems exist in game 
theory.  Two concepts in game theory that have been looked into 
the most are Pareto Dominance and Nash Equilibrium [9].  

Pareto Dominance defines the dominance of one strategy over all 
others for some condition.  The set of all undominated strategies 
is referred to as the Pareto Front.  This front gives the possible 
trade-offs in strategies.  All strategies on the Pareto Front are the 
best given some condition.

This is the currently most popular mechanism in applying game 
theory to competitive coevolution.    Ficici [2] describes a method 
of applying Pareto  Dominance to  coevolution.   The population 
evolves against  the current dominant set rather than each other. 
This gives a clear goal to the evolution as helps solve problems 
such as the Red Queen effect as well as mediocre stable states.  It 
also  has  some effect  on  intransitive  cycles,  however,  it  doesn't 
work all that well when those cycles exist.  It is able to give an 
indication of them.  

Bucci [4] takes a similar approach in using a Pareto Hill Climbing 
algorithm (similar approach to Pareto dominance as [2]).  He runs 
experiments using two versions of the Numbers Game (see below 
for details).  He uses the Intransitive Numbers Game as well as the 
Focusing Game.  the intransitive game (as the name implies) has 
many  intransitive  cycles.   The  focusing  game  does  not  have 
intransitive  cycles  but  good  competing  strategies  can  be  very 
different (causing forgetting problems).  He runs them using the 
Pareto Hill Climber as well as an algorithm that doesn't use Pareto 
dominance  and  shows that  the  algorithm not  using  Pareto  has 
significant  problems  where  the  Pareto  algorithm performs very 
well.

Bucci  [6]  formalizes  Pareto  coevolution  for  two  player,  two 
outcome games.  It is typical of most of the work done in game 
theory for coevolution that they use two player, two outcome, and 
even zero sum games.  Zero sum simply means that the scores of 
the players (two players in all of these cases) sum to zero.  This is 
usually done for two player games to mean one player wins, and 
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the other loses.  It often also allows each to score zero – meaning 
a tie.

De Jong in [3] introduces the MaxSolve Algorithm.  This paper is 
often  cited  by  others  in  the  field.   This  again  uses  Pareto 
Dominance as a solution concept.  It also looks briefly at Nash 
Equilibrium, but does not use it much.  MaxSolve formalizes an 
algorithm to use Pareto Equivalence Sets to solve simultaneous 
goals.  It uses the Compare on One Game to test this (see below 
for details).

De  Jong  in  [5]  specifically  looks  at  using  Pareto  Coevolution 
solve intransitive games.  He claims (as others do) that intransitive 
games lead to cycling.  His claim is that Pareto Coevolution can 
transform an intransitive game into a transitive one.  He tests this 
using the Intransitive Numbers game.

Another  game  theory  concept  often  referred  to  in  Nash 
Equilibrium.  This is the concept that says that games can get into 
a state where a change in strategy for either player would cause 
their score to go down.  This is seen as the optimal strategy for a 
rational player.  The problem with Nash Equilibrium is that for a 
given  game,  there  could  be  many Nash  Equilibrium.   This  is 
typically solved in the current research by choosing games with a 
single  Nash Equilibrium as well  as using only two-player zero 
sum  games.   For  two-player  zero  sum  games,  all  Nash 
Equilibrium are the same total  fitness.   For  certain  cooperative 
games (such as the Prisoner's Dilemma – which is not zero sum) 
this is not the case.

Although various authors look briefly at Nash Equilibrium as a 
solution  concept,  the only one that  goes deeply into  using it  is 
Ficici [1].  It is used there as the goal for a memory mechanism to 
avoid forgetting and intransitive states.   This paper  looks more 
deeply into that.

3. Numbers Game
The Numbers Game really a loosely related set of games that are 
very good  for  looking into  evolutionary strategies.   A Number 
Game is usually defined by each player playing an  n-dimentinal 
vector of integers.  The specific game defines which strategy wins.

Numbers Games are popular in coevolution research because they 
can be simply evolved and can be defined to create many of the 
problems  where  research  is  desired.   Three  different  numbers 
games are  described  below that  have been used in  coevolution 
research.

3.1 Intransitive Numbers Game

The Intransitive Numbers Game was first defined by Watson and 
Pollack  [7].   It  was  created  to  make  intransitive  cycles.   An 
intransitive  cycle is  where strategy A beats  strategy B,  B beats 
strategy C, but C beats strategy A.  The most obvious example of 
this is the game of Rock – Paper – Scissors.  Rock beats Scissors, 
Scissors beat Paper, and Paper beats Rock.
For  a  vector  of  n dimensions,  the  winner  of  the  intransitive 
numbers game can be simply defined as the the highest value in 
the  dimension  where  the  competing  strategies  are  closest. 
Ficici[1]  also adds a value to it defining the minimum distance 
away it will consider for closeness.  This can allow it to be set up 

so that a dimension will not be declared unless it is a certain value 
different.  The significance of this will be described more later.

3.2 Focussing Game

The Focussing Game is used by Bucci[4].  This defines a game 
that  creates  asymmetric  winning strategies.   That  is  where  two 
equally good strategies could be very different.   The Focussing 
Game simply takes the highest of all dimensions and compares 
those values.
For a vector of n dimensions, the winner of the focusing game is 
the one with the highest dimension in any dimension. This causes 
a focusing problem for coevolution because it works best with a 
diverse population but can cause a population to focus to much on 
one dimension.

3.3 Compare on One

The Compare on One game is used in De Jong[3].  It describes a 
game similar  to  the  Focussing  game.   Instead  of  allowing  the 
highest in any dimension to be compared though, it compares a 
particular dimension based on the highest dimension of the  test. 
In this, the strategies that will do the best overall are the ones that 
have a high value in  all dimensions but if the tests are all in a 
single  dimension,  a  coevolution  strategy  could  evolve  only 
strategies in that dimension again causing a focusing problem. 

Table 1. Numbers Game Properies

Game Type Definition Property

Intransitive 
Numbers Game

Highest in 
closest 

dimension
Intransitive sets

Focussing 
Game

Highest in any 
dimension

Asymmetric winning 
strategies

Compare on 
One

Highest in the 
dimension of the 

test set

Causes focus 
problems

4. Nash Memory
Ficici[1] the uses the concept of Nash Equilibrium as a structure 
for memory management to improve the process of coevolution. 
He attempts to  solve the  problems of forgetting and cycling in 
coevolution  by  adding  a  solution  concept  and  memory 
mechanism.  He more or less succeeds but  with some practical 
problems.

Memory is needed in coevolution to help solve the problem of 
forgetting  in  these  algorithms.   That  is  while  searching  the 
evolutionary space, traits that were useful at one point are lost but 
are  needed  later.   This  can  happen  because  for  a  given 
environment, that trait is not currently useful or because it simply 
migrates with  similarly useful  traits.   Because the  search space 
may be volatile (such as in a game) the heuristic that determines if 
it is good or not needs to adjust as well.  This is the case in such 
things as rock-paper-scissors where the best strategy is dependent 
on what your opponent plays.
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Nash Equilibrium helps  to  deal  with  this  volatile  environment. 
Nash  Equilibrium says that  there  is  a  strategy that  is  the  best 
strategy to  play against  itself.   That strategy could  be a mixed 
strategy meaning that there is a set of strategies that are played at 
some  probability.   For  example,  in  rock-papers-scissors,  rock, 
paper, and scissors are useful at equal probabilities.  Therefore the 
mixed strategy is to play each one at that  probability.  Each of 
those  pure  strategies (i.e.  rock,  paper,  and scissors)  are  said  to 
support the mixed strategy.  If a strategy is a Nash Equilibrium, it 
also beats all pure strategies.  This gives a good goal state as well 
as allows the goal state to encode the possibility to play multiple 
strategies because of different environments.  It should be pointed 
out  that this only works when all  of the pure strategies can be 
defined and finite.

One  problem seen  in  the  experiments  this  paper  were  that  the 
Nash  Approximation  grows  significantly  over  time.   It  creates 
such  a  complex  system  that  it  can  cause  serious  practical 
problems.  This problem will be looked at in more detail as well 
as a possible solution to the problem – Focused Nash Memory.

4.1 Description

The concept behind Nash Memory is to use two sets of strategy to 
maintain the memory and a heuristic mechanism (in this case an 
evolutionary algorithm) to produce a set of strategies that can beat 
the currently accepted bests strategy.
This  uses  the  property  of  Nash  Equilibrium that  for  zero-sum 
games, the Nash Equilibrium is secure (i.e. can't be beat) against 
all  non-Nash strategies.    It  also uses the property that  a Nash 
strategy can be defined as a mixed strategy. 
A pure strategy is as a single strategy of the game.  In this case 
that would be a single vector.  A mixed strategy is a set of pure 
strategies  and  a  value from 0  to  1  for  each of those  strategies 
defining the ratio for use of that strategy.
The memory of Nash Memory consists of the current best Nash 
Approximation and a Memory set of all pure strategies that were 
part of the the Nash Approximation at some time.
A set of all winners of the heuristic set (pure strategies that score 
greater  than  zero  against  the  current  Nash  Approximation)  is 
delivered by evolutionary algorithm.  Those winners, the current 
Nash Approximation, and all of the strategies in Memory are put 
into  a game matrix and solved with Linear Programming.  The 
linear programming used is described below.   This provides back 
a set of strategies supporting the new Nash Approximation and 
the ratios for that mixed set.  All of the strategies that were in the 
Nash Approximation (or already in memory) but  no longer are, 
are added to the memory set for future use.
This memory mechanism allows the system to bring back from the 
dead  strategies  that  were  once  considered  good.   It  breaks 
intransitive  cycles  by allowing  all  strategies  in  the  cycle  to  be 
included in the Nash Approximation and as better strategies are 
found, those can get replaced.  It should be noted that a pure set is 
simply a special mixed set which only has a single strategy whose 
use value is 1.0.

4.2 Linear Programming (SIMPLEX)

The  Linear  Programming  used  is  known  as  the  SIMPLEX 
algorithm[8].  SIMPLEX takes a game defined as a payoff matrix 
(i.e.  for  each strategy the  matrix  defines  it's  score  against  each 
other strategy).  A row is added to the end of the matrix, known as 
the  objective entries, representing the percent played for each of 
the row player's strategies (initialized to -1) and a final column 
representing the percent played for the column player's strategies 
(initialized  to  1).   It  also  then  adds  a  corner  value  which 
represents  the  maximum  value  of  the  function.   For  games 
solving, this should eventually approach one.
The pseudo-code to the simplex algorithm is as follows:

1. Are any negative values in the objective entries
1. no – solution found

2. Select a negative objective entry
3. In the column above the selection, select the row with a 

value  that  minimizes  the  ratio  (final  column  value)  / 
(row value) where row value != zero (known as the  ө-
ratio.)

4. Pivot the table at that selected row and column to obtain 
the  new  tableau.  (modifies  all  values,  making  the 
objective entry non-negative)

This  algorithm  finishes  with  a  set  of  pivoted  algorithms  and 
values for each of those algorithms.  If the algorithms were not 
pivoted, or their value is ~0 then it is considered “not-used” for 
purposes of Nash Memory.  The percent values used are treated as 
the values for the mixed sets.

5.Experimentation Tool and Software Design
To  conduct  the  experiments  for  this  project,  a  test  tool  was 
developed.   This  tool  has  a  GUI interface  and  was developed 
using Object Oriented techniques to allow easy experimentation 
and  extension.   One  of  the  goals  for  this  was  to  allow  easy 
addition of different types of games and evolutionary algorithm 
techniques.

When  developing  the  experimentation  tool,  it  was  clear  that 
SIMPLEX does not deal well with very small or very large values. 
That  is  to  say, the mathematics of  it  work fine,  but  practically 
speaking it starts to fail.  The precision of the double values used 
in implementation are so great that values that should be 0 (and 
therefore  ignored  at  certain  parts  of  the  algorithm)  are  instead 
used  and  create  equally  large numbers  in  the  rotation.   It  was 
therefore necessary to stop the calculations ar a certain number of 
significant digits.

6. Experiments
The  first  experiments  done  were  to  test  the  ability  of  Nash 
Memory as described by Ficici[1].  The system was run using the 
Intransitive  Numbers  Game  with  2-dimensional  vectors.   The 
values  of  each  dimension  were  from  0-100.   They  were 
represented as a 200 bit binary string with the value of the first 
dimension being the sum of bits 0-99 and the value of the second 
dimension being the sum of bits 100-199.  It was run in epochs of 
30 generations each.  At the end of each epoch, the  best value 
only was taken and compared to the current Nash Approximation. 
If it dominated the Nash Approximation (i.e. it at least tied every 
pure  strategy in  Nash  and  beat  at  least  one of  them) then  that 
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strategy became the new Nash Approximation (with mixed value 
of 1.0) and the entire previous Nash Approximation was added to 
Memory.  If the best strategy at the end of the epoch scored less 
than 0.0, the Nash Approximation was not updated.  Otherwise, 
SIMPLEX  was run  against  the  best  strategy,  the  current  Nash 
Approximation, and the Memory.  All used strategies with a use 
percent greater than zero become the new Nash Approximation, 
and  all  strategies  previously  in  Nash or  Memory that  were not 
used were put into Memory.
The GA used only mutation (no crossover) with a per-bit mutation 
rate  of  0.01.   It  used  Elitism of  10  and  Tournament  Selection 
(tournament size of 2).
The results obtained were not quite as clean as those presented in 
[1], but did show the same trends.  Figure 1 show the mean over 
20 runs of the best scores against the Nash Approximation at the 
end of each epoch.  It shows, like Ficici[1] did that early on, it 
was easy to obtain a good score against The approximation, but as 
the approximation became better, it was more difficult to obtain a 
good score against it.

What  is  not  completely  clear  is  whether  it  is  the  memory 
mechanism that causes this, or if it is just a lack of ability of the 
GA.  Although it  becomes more difficult  to  find a good  score 
against  the  Nash Approximation,  the  approximatin  is not  really 
very close to the actual Nash value of the game (100, 100).  The 
mixed set is typically supported at the end with strategies such as 
(70, 48) and (69, 72).
Figure 2 shows the mean of the average population score against 
the Nash Approximation.  This shows that although the GA can 
produce  an  individual  that  can  usually  beat  the  Nash 
Approximation  (though  just  slightly)  the  Nash  Approximation 
does better against the averge.

One notable trend in the system is that as the system runs,  the 
number of strategies in support of the Nash Approximation gets 
very large.  Early on, it can actually drop back down to 1 as the 
system finds a dominant strategy, but later, it becomes large.  The 
graph in Figure 3 shows the mean number of strategies in support 
of the Nash Approximation at the end of each epoch.

The number  continues  to  grow.  This  is  actually much smaller 
than what Ficici[1] had in his results.  For a system with an actual 
equilibrium of  a  single  pure  strategy,  it  should  eventually  get 
smaller  but  doesn't.   As  an  attempt  to  improve  the  GA  and 
hopefully get better Nash Approximations, the experiments were 
run again but with different values for the GA, 
For the second run, it was attempted to converge more quickly to 
better obtain values that could beat the Nash Approximation.  To 
do this,  the  mutation rate was lowered to  0.001 and two point 
crossover was added with a rate of 0.9.  It still used a population 
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of 100, number of generations per epoch of 30, and tournament 
selection with size 2.  The results of those are shown in Figure 4 
and 5 below.

It is interesting that the GA much more quickly fails to produce 
strategies that  can beat the Nash Approximation.   In fact,  there 
were some runs that  didn't produce another strategy that could 
win after the 70th or 80th epoch.  The final strategies are still  as 
good  or  better  than  those  produced  with  the  weaker GA.  For 
instance, one run got a final Nash Approximation of two strategies 
(71, 48) – played at 0.33 and (70, 79) – played at 0.66.  That is 
still  not  all  that  close to (100,  100)  but  is  still  fairly relatively 
good.

With a stronger GA the average number of stragegies needed went 
down significantly as well.  Figure 6 shows the graph of number 
of strategies at each epoch.

The number of strategies in support even appears to go down as 
the system gets better and better approximations.

7.Focused Nash Memory
The  number  of  strategies  needed  to  support  the  nash 
approximation takes a disturbing trend in  the  normal case.   As 
higher epochs are used it  keeps greater and greater numbers of 
strategies  in  support.   In  Ficici's  original  paper  [1]  he  uses  a 
strategy to  finally get a very close approximation  of the  actual 
Nash Equilibrium of (100, 100) but it required 123 strategies in 
support [1].

The growing number of strategies presents a fairly harsh problem 
for  practical  use  of  this  memory  mechanism.   With  greater 
numbers  in  the  Nash  Approximation,  all  other  calculations  get 
greater. 

The problem with the growing number of strategies in support of 
the Nash Approximation has to do with the SIMPLEX algorithm 
itself.  SIMPLEX will keep strategies that have a very very low 
actual play value.  If the mixed values are studied on a standard 
run with a lot of strategies in support, it is observed that there are 
typically a few high use strategies and  a significant  number  of 
very low used strategies (see Table 2).  These strategies contribute 
very little to the actual score of the Nash Approximation.

Table 2. Example of a Nash Approximation

Strategy Use Strategy Use

(55, 35) 0.0002 (58, 42) 0.09909

(55, 59) 0.00145 (33, 62) 0.12329

(64, 36) 0.00497 (58, 53) 0.00439

Figure 4: Mean Best score against Nash over 20 runs (xover 0.9, 
mut 0.001)
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Figure 5: Average Population Score against Nash
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Figure 6: Strategies supporting nash from run 2 (xover 
0.9, mut 0.001)
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(52, 58) 0.00439 (52, 58) 0.0138

(54, 53) 0.03593 (61, 41) 0.01152

(65, 38) 0.00374 (71, 67) 0.18891

(63, 35) 0.01086 (73, 41) 0.03284

(46, 62) 0.02179 (57, 54) 0.01439

(62, 46) 0.07393 (56, 51) 0.03884

(56, 51) 0.03884 (62, 52) 0.02115

(52, 55) 0.01843 (61, 38) 0.0165

(65, 53) 0.02179 (51, 71) 0.11087

(53, 46) 0.01902 (45, 71) 0.06515

(27, 57) 0.03517 (67, 35) 0.01198

You can see in Table 2 that there are only a few strategies even 
above 0.1.  Looking at two of those strategies (71, 67) and (51, 
71) they are clearly dominant over most of the other strategies in 
the list.  The question then becomes, what benefit does the system 
gain by keeping these low use strategies to evolve against.

In  order  to  focus  the  evolution  of  the  Nash  Approximation,  a 
Focus Value was added to the experiment.  This value determines 
the lowest use percent that would be allowed to support the Nash 
Approximation.   This  was added  to  the  end  of  the  SIMPLEX 
algorithm so that any strategy that wasn't at least that good, was 
not allowed in the Nash Approximation.  The experiments from 
earlier  were  then  run  with  only that  change.   The focus  value 
selected for this experiment was 0.05.  The Figure 7 shows the 
mean value of the best score obtained with that focus value on the 
first experiment (as Figure 1 above).

What is seen is that the Nash Approximation has a much harder 
time beating the best the heuristic can come up with.  Like before, 
this is only half of the story.  It is unclear if this is because it the 
memory is failing or the GA if just doing better.  Observing the 
approximations obtained look at least as good, if not better than 
those obtained without the focus.

One thing that is clear is that the size of the Nash Approximation 
is significantly lower.  Figure 8 shows the number of strategies in 
support at each epoch.

Similar results were found for the second experiment.  The real 
test though on whether or not this is an effective strategy is how 
good the strategies is produces are.  A final set of experiments 
were run to actually play the approximations against each other at 
the end of each epoch.  The results are show in figure 9.

This experiment averaged the score per epoch over 20 runs.  One 
was run using the a focus value of 0.05 the other with no focus 
value.  The graph shows that the focused Nash memory starts off 
slightly better but slowly gets worse at higher epochs.  This is the 
opposite  of  what  was expected.   It  was thought  that  at  higher 
epochs  when  the  non-focused  version  got  large  numbers  of 
strategies,  it  would  become  harder  to  develop  strategies  and 
therefor suffer.  It appear that the focused version gives the Nash a 
fast start – ignoring the weaker strategies, but as the non-focused 
one is able to take more strategies in, it makes up ground.

In any case, the differences in the strategies at any level are fairly 
small.  This demonstrates a trade-off that can be made.  There are 
inherent  advantages  to  having  fewer  strategies  in  support 
(performance, readability, etc) but that can be gained at a slight 
cost in overall strategy effectivness.

Figure 7: Mean Best Score with Focus Value 0.05
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8.Conclusions and Future Work
Overall the focused Nash Memory strategy did not have the effect 
that was hoped for.  It is possible that different focus values would 
give better results.   It was promising that the negative effect of 
removing  strategies  did  not  cause  significant  loss  of  strategy 
ability.  The attempt taken to focus the Nash Memory and reduce 
the  unnecessary  support  strategies  is  still  a  valid  mechanism. 
Instead  of  the  expected  utility  of  increasing  the  ability  to  find 
better strategies, it still  has utility in improving performance, at 
least to the point of justifying more research.

There  are  other  possible  ways  to  focus  the  ability  of  Nash 
Memory that were not looked at here.  Instead of taking a pure 
focus percent of overall strategy use (i.e. 0.05 an better are kept), 
it way work better to allow it to be a percent of the best strategy. 
This would allow the focus value to change depending on other 
strategies present.  The purpose is to filter the states when there 
are  a  couple  really  useful  strategies  and  many  non-useful 
strategies.   It  way  also  work  better  (but  with  a  loss  of 
performance) to put the winning strategies that pass through the 
focus filter back through the SIMPLEX process again.  This may 
work better than the simple normalizing that  was used in these 

experiments.   Some of the  strategies taken were taken partially 
because  of  their  ability  to  beat  the  strategies  that  were  later 
removed.

Overall  the  Nash  Memory mechanism helps  coevolution  avoid 
some of the problem states.  The ability to focus it is needed in 
some manner to help reduce the bloat of strategies it faces, though 
it may come at a decrease in overall strategy performance.  This is 
just one more trade off that can be weighed when choosing the 
algorithm to use.  
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ABSTRACT 
 

Cooperative Co-evolution generates interest with its ability to 

solve complex domains by breaking down the problem into 

subcomponents.  To be used to the best effect, we must 

understand the performance of cooperative co-evolution under 

varying circumstances.  This paper aims to further the 

understanding the capabilities of cooperative co-evolution by 

expanding the understanding of the effect of collaboration 

methods and extending the analysis to deceptive domains.  We 

show that cooperative co-evolution is fully capable of handling 

deceptive domains through the variation of collaboration methods. 

Categories and Subject Descriptors 

I.2.m [Artificial Intelligence]: Evolutionary Computation 

General Terms 

Algorithms. 

Keywords 

cooperative co-evolution, collaboration methods, deceptive 

landscapes, performance 

1. Introduction 

Understanding is the key for the proper use of any 

technology.  Evolutionary Algorithms (EAs), unaltered, provide 

relatively powerful methods for problem solving and function 

optimization.  The dynamics underlying the basic EA model has 

been studied since the days of their creation [5].  EAs also face 

difficulties in the face of certain domains of fitness landscapes 

that include deception or reduce the effectiveness of search down 

to random [3].  Further research discovered ways to compensate 

for these deficiencies, however 

 

 

 

 

 

 

 

 

 

knowledge of the problem must first exist before a solution can be 

crafted [4][11].  

More recently, attention has shifted to further extensions of 

the basic EA model, such as generative systems and co-

evolutionary systems.  Co-evolutionary algorithms can be further 

broken down into competitive and cooperative.  Competitive 

focuses on ratcheting up the arms race between individuals to 

prevent stagnation and to provide better solutions under 

conditions where the optimal may be unknown or unclear.  

Cooperative focuses more on decomposing a problem into 

subcomponents that then can be optimized separately and later 

combined together to collaboratively find a solution [1]. 

In this paper, we are concerned with the use of cooperative 

co-evolutionary algorithms (CCEAs) as static function optimizers, 

as introduced in [10].  Similar to basic EAs, CCEAs have 

dynamics that must be understood to be used effectively.  The 

unique features of these collaborative systems were explored in 

[12].  These features include frequency of interaction and 

collaboration schemes.  In this paper, we will be examining the 

effect of varying collaboration schemes.  Further work has been 

done in understanding the actual behavior and dynamics of 

CCEAs in [6][7][8][9][12][13][14].  CCEAs also have their own 

class of problematic dynamics, as explored in [2].  These involve 

the devolvement to sub-optimal stable states from which escape is 

difficult.  The dynamics of CCEAs on these types of landscapes 

were explored in [9].   

This paper will further expand on the dynamical 

understandings of the behavior of CCEAs on particular 

landscapes, especially in reference to the variation of 

collaboration methods.  We will be varying two of three 

collaboration parameters described in [12].  The three parameters 

are number of collaborators, selection pressure on collaborators 

and fitness assignment method.  We will focus on the first two 

and their effects on landscapes with deceptive features.  Deceptive 

landscapes have been shown to be difficult to overcome for EAs 

[3].  We will examine the dynamics of CCEAs on deceptive 

landscapes adapted from [9].  Landscapes with stables states 

provide difficulty for CCEAs, but can be overcome with different 

collaboration methods [6].  Adding deceptiveness, these 

landscapes will provide insight into problems which are not just 

difficult for CCEAs or EAs, but provides difficulty for both.  We 

will show that the variance of collaboration methods can provide 

capability for overcoming deception, while balancing out the 

capability of performance on non-deceptive landscapes.  This 

provides insight into parameter settings that can be used if the 

CCEA user is unsure whether their landscape contains deceptive 

features or not.            
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2. Experimental Setup 

2.1 Algorithm  

We use a two population CCEA setup to evolve solutions to 

two parameters in a fitness equation.  The basic algorithm first 

initializes the two populations with random real numbers.   Using 

sequential update timing [12], each population takes turns being 

evaluated, switching with one turn intervals.  During a 

populations turn, it is evaluated using collaborators from the other 

population, selected using tournament size 2 and mutated using a 

Gaussian distribution.  Additionally, collaborators are selected at 

the end of the turn to be used with the other population.  The 

parameters used for all runs remained the same, with the 

exception of number of collaborators, collaborator selection 

pressure and deceptiveness (See Table 1). 

 

Table 1. Parameters for CCEA 

Parameter Value 

Individuals per Population 10 

Evaluations per Run 1000 

Selection Rate 1.0 

Selection Method Tournament, Size 2 

Elitism 1 

Mutation Rate 0.75 

Gaussian Sigma 0.25 

Number of Collaborators 1 through 5 

Elitism for Collaborators 0 through 5 

Fitness Assignment Method Optimistic 

Deceptiveness 0.0; 0.9 

Maximum Value 8.0 

 

Following from [9] we decided to maintain a small 

population for better effects of overcoming the problems inherent 

in some fitness landscapes.  The other settings were also 

transferred over from [9] to better verify the functionality and 

provide contrast to our extended results.  For each experiment, we 

varied the number of collaborators from 1 to 5, inclusive, 

allowing us to collaborate with up to half the other population. 

We varied the selection pressure on the collaborators from 0 to 5, 

inclusive, where this indicates the number of “best” collaborators 

that are used for the next collaboration and the rest are chosen 

randomly with replacement.  The final parameter, deceptiveness, 

controls how deceptive the landscape is.  This is further explored 

when we look at the fitness landscapes.  Sufficed to say, it ranges 

from 0.0 to 1.0 and higher values indicate greater deception while 

0.0 is no deception.  We use a maximum individual value of 8.0, 

minimum at 0.0, to provide continuity for results from [9].  Each 

parameters combination is run a total of fifty times and the results 

are tabulated from the statistics of the combined runs. 

2.2 Fitness Landscapes 

There are essentially four landscapes under examination.  

The first two are landscapes that have been examined before in 

[9].  These are the One Ridge and Two Ridge landscapes that 

provided insight into the dynamics of CCEAs (See Figures 1 and 

2).   

 

 

 

Figure 1. One Ridge with No Deceptiveness, d= 0.0 

 

 

 

 

Figure 2. Two Ridge with No Deceptiveness, d = 0.0 

 

The second two are extensions of these basic landscapes 

which are extended to include deceptive elements.  These 
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deceptive elements provide a secondary hill that leads the away 

from the global optimum and towards a local optimum.  In this 

case, the One Ridge and Two Ridge have a local optimum at (0,0) 

decrease in value until a delta point, then increase from that delta 

point to a global maximum at point (m,m) (See Figures 3 and 4). 

 

The equation that governs the one ridge landscapes is as follows: 
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In the above equation, m represents the maximum value x 

and y can take on, while d represents the deceptiveness factor that 

governs how much of the landscape is deceptive.  When d is 1.0, 

we have two equal length ridge areas, when it is 0.0, the deceptive 

landscape is completely eliminated. Similarly, the equation for the 

two ridge landscape is: 
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The two ridge function has similar functionality to the 

previous one ridge function, with m being the maximum value of 

x and y and d being the deceptiveness factor.  Overall, the 

deceptiveness factor controls the size of the deceptive area and the 

local optima of the deceptive area (See Figures 3 and 4). 

In [9], we saw that the dynamics of the CCEA on the One 

Ridge and Two Ridge landscapes greatly differed.  These 

dynamics were further explored in [6][7] in reference to both the 

variation of interaction frequency and collaboration methods.  We 

will see that, while the One Ridge and Two Ridge functions have 

different effects in the collaboration method performance 

especially in regards to One Best method, adding deception to 

either landscape causes similar deception effects on the 

collaboration methods.  This paper examines landscapes with 

higher deceptiveness to evaluate the performance of the CCEA 

under harsher conditions. 

 

Figure 3. One Ridge Function with Deceptiveness, d = 0.9 

 

 

Figure 4. Two Ridge with Deceptiveness, d = 0.9 

3. Results 

3.1. One Ridge 

It is important to establish a baseline for performance of 

these landscapes before extending them into deceptive landscapes.  

Without a clear understanding of the initial effects of the variation 

of collaboration methods on non-deceptive landscapes, its more 

difficult to interpret the exact effects that varying collaboration 

methods has on deceptive landscapes.  By contrasting with a 

baseline, we are allowed insight into the dynamics that are unique 

to the deceptive landscape.  The effects of varying collaboration 

methods are illustrated in figure 5. 
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Collaboration Methods on One Ridge
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Figure 5. Best of Run Performance for Different Collaboration Methods over fifty runs with a 95% confidence interval on One 

Ridge function with no deception, Deceptiveness d = 0.0 

 

Figure 5 shows the performance of different collaboration 

schemes on the One Ridge function.  These schemes vary from 

one collaborator up to five collaborators and a selection pressure 

on the collaborators from none being elite, meaning all random 

selection, to complete elitism with all collaborators being selected 

through elitism.  With a maximum value of 8.0 for each 

individual, the optimal value it 16.0 while the minima are 0.0.  

The figure shows the average best of run from fifty runs and the 

95% confidence interval around the average, showing what best 

value an estimated 95% of runs can achieve.  It is arranged by 

selection pressure and then number of collaborators.  Overall, the 

best performer is (2 best + 2 random), while the worst is 1 best. 

3.2. Deceptive One Ridge 

The performance of the different collaboration methods on a 

one ridge with deception, d, equal to 0.9 is shown in figure 6.  It 

is important to keep in mind that while adding deception to the 

landscape, we also increase the fitness for a portion of the 

landscape, leading to an increased area of higher fitness versus the 

same landscape with no deception in it.  The organization remains 

the same as the One Ridge with no deception.   The best 

performer in this case is (1 best + 2 random), while the worst 

performer remains 1 best.  The best of run fitness is not the only 

important statistic to examine in a deceptive landscape, but also 

the number of times it is deceived to see how often the search 

results in an goes in an path that does not lead to the optimum 

(see Figure 7). 

 

 

Deceptive One Ridge Maximum Fitness
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Figure 6. Best of Run Performance for Different Collaboration Methods over fifty runs with a 95% confidence interval on One 

Ridge function with Deceptiveness, d = 0.9 
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One Ridge Deception Rates

0

5

10

15

20

25

30

1 
R
an
do
m

2 
R
an
do
m

3 
R
an
do
m

4 
R
an
do
m

5 
R
an
do
m

1 
Be
st

1 
Be
st
 +
 1
 R
an
do
m

1 
Be
st
 +
 2
 R
an
do
m

1 
Be
st
 +
 3
 R
an
do
m

1 
Be
st
 +
 4
 R
an
do
m
2 
Be
st

2 
Be
st
 +
 1
 R
an
do
m

2 
Be
st
 +
 2
 R
an
do
m

2 
Be
st
 +
 3
 R
an
do
m
3 
Be
st

3 
Be
st
 +
 1
 R
an
do
m

3 
Be
st
 +
 2
 R
an
do
m
4 
Be
st

4 
Be
st
 +
 1
 R
an
do
m
5 
Be
st

N
u
m
b
e
r 
o
f 
D
e
c
e
p
ti
o
n
s

Population Trend

Best

 

Figure 7. The times deceived out of 50 runs for different collaboration methods on One Ridge with Deceptiveness, d, equal to 0.9.  

Population trend indicates whether the final generation’s best collaboration was in the deceptive region while Best indicates the rate 

at which the best of the entire run was within the deceptive region.  

 

Figure 7 shows the deception rates over the fifty runs for the 

One Ridge with deceptiveness, d, equal to 0.9.  In it, we examine 

the number of times, out of the fifty runs, that the best 

collaboration in the populations in the final generation (e.g. best 

individual in the population at the end) is on the deceptive area of 

the landscape and also the number of times the best collaboration 

(e.g. the global best) of the entire run was on the deceptive 

landscape area.  In both cases the best collaboration represents the 

best individual, since we are using Optimistic fitness assignment.  

These give us an idea of how well the collaboration methods are 

handling the deception.  The maximum number of deceptions 

possible is all fifty of the runs, while the minimum is zero.  We 

can see both values peek at 1 best, while best reaches its minimum 

at 4 random and the population trend has a minimum at 2 random. 

3.3. Two Ridge 

As seen in [6][9], the One Ridge function has unique 

properties in behavior in relation to the behavior of the CCEA.  

Figure 8 demonstrates the differences that were found.  As in the 

case of the One Ridge function, we see the average best of run 

fitness with a 95% confidence interval for each of the 

collaboration methods being looked at.  The best performing 

collaboration method in this case is the 1 best, while the worst 

performing is the 5 random collaboration method. 

 

Collaboration Methods on Two Ridge
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Figure 8. Best of Run Performance for Different Collaboration Methods over fifty runs with a 95% confidence interval on Two 

Ridge function with no deception, Deceptiveness d = 0.0 
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Deceptive Two Ridge Maximum Fitness
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Figure 9. Best of Run Performance for Different Collaboration Methods over fifty runs with a 95% confidence interval on Two 

Ridge function with Deceptiveness, d = 0.9 

 

 

3.4 Deceptive Two Ridge 

Figure 9 shows the best of run fitness metrics for the 

deceptive Two Ridge landscape, with the deceptiveness parameter 

set to 0.9.  In this instance, the best collaboration method ended 

up being the (3 Best + 1 Random), while the worst performer was 

4 Random.  There is also a greater similarity between the different 

collaboration methods. This is a change from the non-deceptive 

Two Ridge function, in which the One Best was the best solution 

and the various collaboration methods showed a significant 

difference from each other.  In figure 10, we can see that there are 

 

 

 

several collaboration methods that are equivalent in ability to 

avoid deception.  These include (3 best + 1 random), (2 Best + 3 

Random) and (1 Best + 4 Random).  Additionally, the 5 Random 

collaborators method achieves very low best of run deception.  

The worst performer in this case is the One Best collaboration 

method.  This parallels the result in the deceptive One Ridge 

function, in which we saw that the One Best collaboration method 

was the worst.   
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Figure 10. The deception rates for different collaboration methods on Two Ridge with Deceptiveness, d, equal to 0.9.  Population 

trend indicates whether the final generation’s best collaboration was in the deceptive region while Best indicates the rate at which 

the best of the entire run was within the deceptive region 
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4. Discussion 

4.1 Non-deceptive Landscapes 

Examining the results from the non-deceptive landscapes, we 

can see that they confirm the results found in [6].  We can also see 

some patterns within the individual variations of the parameters.  

In the case of the One Ridge, we can see that just one collaborator 

is insufficient for good optimization performance.  Both the One 

Best collaborator and One Random collaborator methods perform 

worse than all other methods included.  This specifically is an 

artifact of contradictory cross-population epistasis of the One 

Ridge landscape [6][9].  In Figure 5, we can see that by just 

increasing the number of collaborators, whether they are random 

or best collaborators, improves the performance of the 

optimization.  The other trend to note in One Ridge collaboration 

performances is that pure elitism in collaboration methods also 

hinders the performance.  Even the addition of a single random 

collaborator increases the ability of the algorithm to deal with the 

One Ridge landscape.  Collaboration techniques with some 

elitism, those with some number of best collaborators, and some 

number of random collaborators give us approximately equal 

good performance. 

Moving on to the Two Ridge landscape, with figure 8 we can 

see a reversal of fortunes for the One Best collaboration method.  

The One Best method now has exceedingly high performance 

versus all other collaboration methods.  However, all 

collaboration methods perform very well on this landscape.  They 

are all capable of achieving the maximum value of 16.0, while not 

going lower than 15.0 in general.  Even in this narrow range, there 

is variation that shows us differing performance capabilities of the 

collaboration methods.  In this landscape, we can see that 

increasing the number of collaborators actually decreases the 

performance of the algorithm on the landscape, the opposite of 

what we saw in the One Ridge landscape.  Further, the addition of 

random collaborators sometimes helps and sometimes hurts, but 

overall any collaboration method outside One Best and One 

Random gives worse performance.   

Already we can see that the collaboration method chosen 

biases our algorithm towards certain solutions on the landscape 

and to overcome obstacles in unknown landscapes, compromise 

has to be made, following from [15].  Collaboration methods that 

are not the ideal for either landscape, but still perform well on 

both give us the capability to make such compromises.  In this 

instance, we can see rather than using the One Best method on the 

Two Ridge landscape, we can also use the 2 Best and 2 Random 

collaboration method that gives us good performance on the Two 

Ridge landscape and also gives us the best performance on the 

One Ridge landscape.  However, the interaction of these settings 

with the other parameters of the algorithm must be kept in mind. 

4.2 Deceptive Landscapes 

In the One Ridge Deceptive landscape, figure 6 shows a 

pattern of performance for collaboration methods very similar to 

the patterns shown in figure 5, for the One Ridge landscape with 

no deception in it, keeping in mind that because the deceptive 

landscape has more of  the landscape with higher fitness, the 

algorithm is achieving better results overall.  Again, One Best and 

One Random show poor performance, while other collaboration 

methods with more collaborators demonstrate greater capability to 

handle the One Ridge landscape.  The same pattern of increased 

number of collaborators as well as best collaborators mixed with 

random demonstrating the best performance appears here.  

Overall, it seems to demonstrate that deception has no effect on 

the performance of collaboration methods.   

However, let us look at the Deceptive Two Ridge landscape 

results in figure 9.  Again, we must take into account that the 

landscape is overall higher in fitness and also that the Two Ridge 

achieves high performance with any collaboration method, so we 

are examining a much narrower range of performance.  Given 

these caveats, we can still see a marked change from the 

performance of the collaboration methods on the Deceptive Two 

Ridge from the same methods performances on the Two Ridge 

with no deception.  We can see that the previous best 

collaboration method, the One Best collaborator, severely 

decreased in performance, such that the maximum value isn’t even 

in its 95% confidence interval.  Instead, even purely random 

collaboration methods are outperforming it and instead of 

increased number of collaborators decreasing performance, as was 

the case in the Two Ridge with no deception, more collaborators 

improves the performance over the One Best collaboration 

method.  In this landscape, deceptiveness seems to have a severe 

effect on the performance of the collaboration methods, to the 

point that the previous best method is now one of the worst 

methods.  We are now left with two contrasting views, where one 

shows little to no change in the behavior of the collaboration 

methods while the other shows great changes.  The question is 

then whether deceptiveness truly has no effect on one and a great 

effect on the other, or if there is more to the story than the 

maximum fitness over multiple runs is showing us. 

Let us then examine how often the collaboration methods are 

deceived, that is out of the fifty runs, how many times were the 

best individuals found on the deceptive area of the landscape.  

This gives us some idea of how the collaboration methods are 

handling the deceptiveness of the landscapes.  Figures 7 and 10 

show the deception rates over the fifty runs for two important 

statistics.  The first, Population Trend, tells us if the final 

generation’s best individual was on the deceptive area of the 

landscape.  This tells us whether or not the population as a whole 

was led to a deceptive area.  The second, Best, tells us if the best 

of the entire run was found in the deceptive area of the landscape.  

This will give us an idea if the algorithm as a whole was deceived, 

and if the Population Trend was an anomaly of chance.   

Looking at figure 7, we can see some intriguing patterns in 

the deception rates and that differing collaboration methods do 

handle deceptiveness differently on the Deceptive One Ridge 

landscape.  The first thing to note is that as soon as elitism is 

added to the collaboration method, that both the Best and 

Population Trend rates are correlated, almost always having equal 

values, while using purely random collaborators leads to a lower 

Best deception rate with a higher Population Trend rate.  Further, 

the One Best collaboration method has a deception rate of 50% 

for both the statistics.  This means that half the time it is both led 

to the deceptive side of the landscape and that it finds the best of 

the entire run on the deceptive side.  However, other collaboration 

methods achieve deception rates as low as half that value, tending 

toward the deceptive area only a quarter of the time.  Also, up to a 

point, increasing the number of collaborators gives use a better 

fitness.  Despite the similar best of run values for both the One 

Ridge with no deception and the Deceptive One Ridge, 

deceptiveness certainly has an effect on it. 
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Now on figure 10, we can see why the One Best 

collaboration method performed much worse on the deceptive 

Two Ridge landscape.  Again, the One Best method has a 50% 

deception rate, leading it to the deceptive optimal half of the time.  

Interestingly, the average best of run value on the Deceptive Two 

Ridge for the One Best collaboration method is the average of the 

two optima in the landscape.  This time, however, there are much 

different patterns in the deception rate behavior for the different 

collaboration methods.  Outside of the purely random 

collaboration methods, increasing the number of collaborators 

seems to enhance the capability to handle the deceptiveness on 

this landscape.   

The ability of the collaboration method to bias our search can 

be seen on these four landscapes.  Each landscape has its own best 

performer in relation to best of run fitness, or deception.  If we 

know that our landscape has certain properties, then we can 

choose specific collaboration methods that perform well on it, 

while sacrificing capability for other landscapes.  On the other 

hand, if we know nothing about the landscape we may need to use 

a collaboration method which has lower performance on specific 

landscape, but is robust against multiple landscapes.  This follows 

from [15], with deceptiveness adding another variable to our set 

of problems, we must be careful to take it into account when 

biasing our search since robustness to deception may mean 

reduced performance on specific landscapes.   

5. Conclusions and Future Work                                                                            

The basic understanding of the behavior of co-evolutionary 

algorithms is just beginning.  This paper examined a very narrow 

subset of the abilities of these algorithms and the parameters that 

can be modified.  We have shown that various collaboration 

methods have properties that make them superior to others on 

specific landscapes.  With the correct collaboration method, both 

the One Ridge and Two Ridge landscapes can have solutions 

found efficiently.  We have also shown that by varying 

collaboration methods, we are able to overcome deceptiveness on 

landscapes.  Further, collaboration methods that may be very good 

on one landscape, may not perform well across multiple 

landscapes, therefore a sub-optimal but more robust collaboration 

method may be preferable if the shape of the landscape is 

unknown. 

This is only a small number of the possibilities for varying 

the abilities of the CCEA.  Interactions between the various 

parameters that can be adjusted will provide an even greater range 

of capability.  The experiments in this paper were limited to 

populations of size ten.  This limits the number of paths that can 

be explored with the collaboration methods with an increased 

number of collaborators.  Future work should look at the 

capability of these same collaboration methods with increasing 

population size.  As population size increases, an increased 

number of collaborators may also be examined.  We also limited 

the evaluations to a simple optimistic fitness assignment when 

there were multiple collaborators; however there are other ways to 

assign the fitness when there are multiple collaborators [12].  

Understanding the interaction effects of these different parameters 

is a cornerstone to being able to effectively use co-evolutionary 

algorithms.  Once these interactions are known, we can bias our 

algorithms in predictable ways to allow for better solutions to 

specific landscapes or generalize it for robustness in unknown 

landscapes.  
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ABSTRACT 
Logistic regression models are often used in data mining 
problems in which an accurate, interpretable predictive model is 
required. Some disadvantages of these models include the fact 
that the user must choose which predictors enter the model, what 
functional form these predictors have, how to incorporate 
nominal-scale predictors into the model, which interaction terms 
enter the model, and how to handle observations with missing 
values. For all but the smallest datasets, the large search space 
defined by these choices prevents an exhaustive search to find the 
optimal set of choices. This paper addresses the first three of these 
concerns, describing how to create accurate, interpretable  
predictive models using logistic regression tuned by a genetic 
algorithm. The inclusion of interaction terms would be a natural 
extension of the work presented here.  

General Terms 
Algorithms, Performance. 

Keywords 
Logistic Regression, Predictive Modeling, Genetic Algorithm, 
Evolutionary Computation. 

1. INTRODUCTION 
Data mining is a means of extracting previously unknown, 
actionable information from large amounts of data using 
sophisticated, automated algorithms to discover hidden patterns, 
correlations and relationships [2,3,8,12,16,18,22,23,29,31,38]. 
Building predictive models is often an important part of the data 
mining process. In a typical case, historical data is used to create a 
mathematical model which is then applied to new data to make 
predictions. This is an example of a supervised learning method, 
in which a training dataset consists of a response variable plus the 
predictor variables. Note that in data mining applications, a higher 
emphasis is typically placed on predictive accuracy rather than on 
ability of the model to yield insights into the nature of the 
relationships among the predictors and between the predictors and 
the response. Logistic regression is often used in predictive 
modeling when the response is binary because this type of model 
is often easily interpreted and can be very accurate. With other 
models such as artificial neural networks, a potential for higher 
predictive accuracy comes at the expense of reduced 
interpretability -- the magnitude and direction of the relationship 
between each predictor and the response may not be clear, for 
example. 

     Some disadvantages of logistic regression models include the 
fact that the user must choose which predictors enter the model, 
what functional form these predictors have, how to incorporate 

nominal-scale predictors into the model, which interaction terms 
enter the model, and how to handle observations with missing 
values. For all but the smallest datasets, the large search space 
defined by these choices prevents an exhaustive search to find the 
optimal set of choices. In this paper we describe the use of a 
genetic algorithm to tune the parameters (choices) of a logistic 
regression model. This technique efficiently searches the large 
space, balancing the conflicting forces of high predictive accuracy 
and low complexity as defined by the number of predictors in the 
model.  

Section 2 presents background information on logistic regression 
and previous work done on this using evolutionary algorithms. 
Section 3 describes some details of the genetic algorithm 
including how the fitness function is defined. In Section 4 we 
describe the datasets used to test the performance of the 
technique. Section 5 describes the experiments and results, 
incrementally increasing the sophistication of the model at each 
stage. In Section 6 we state the conclusions and offer ideas for 
future work.  

2. BACKGROUND 
2.1 The Logistic Regression Model 
To understand the logistic regression model and introduce some 
terminology we take an example of measuring the age of a tree 
using several characteristics of the tree. A dataset may consist of 
the height, girth, species and age of 100 trees. A specific analysis 
may use the height and girth as interval-scale (numeric) 
predictors, species as a nominal-scale (categorical) predictor, and 
age as an interval-scale response. So this dataset has 100 
observations, 3 predictors and an interval-scale response, age. 
Here, a simple linear regression model may be appropriate: 

age = β0 + β1(height) + β2(girth) +β3(species) 

where the βis are coefficients to be determined by a least squares 
fitting process.  

     Logistic regression models [21] are used in problems in which 
the response is binary. In the tree example above, we may simply 
be interested in whether or not the tree is more than five years old. 
We define a new, binary response variable “mature” with value 1 
for a tree with age >= 5 and value 0 for a tree with age < 5. A 
logistic regression model may be formed by defining p as the 
probability that the response takes the value 1, P(mature=1):  

log(p/(1-p)) = β0 + β1(height) + β2(girth) +β3(species) 

Given enough training data, the values of the βi coefficients can 
be estimated by iterative numerical optimization techniques, 
which results in a completely specified logistic regression model 
that can be used to predict the value of ‘p’ for any observation 
containing the predictors height, girth and species.  
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     The simple model above is most likely not the optimal model. 
It may be that introducing a transformation, such as height2, will 
produce a model that fits the data better. It may be that the 
inclusion of a multiplicative interaction term such as height*girth 
will improve the model performance. If the nominal-scale 
predictor species has more than two distinct values, it cannot be 
used as shown in the model above, with a single coefficient. It 
must be converted into a numeric form that the logistic regression 
model understands. Thus the logistic regression model demands 
much of the user and various strategies have been created to 
develop such models [19].  

     One reward of a well-developed model is an easy 
interpretation of the βi coefficients. For example, let us  assume 
that the logistic regression model shown above fits the data well, 
height is measured in meters, and the value of the β1 coefficient is 
found to be +0.28. The interpretation is that the estimated odds 
that the tree is at least 5 years old (i.e. mature) increases  by a 
factor e0.28 = 1.3 for every additional meter of height, adjusting 
for the girth and tree species.  

     Given a dataset with many predictors, it is usually desirable to 
select that subset of the predictors which yields a model that fits 
the data well. This results in a more compact representation of the 
data. There are several well known methods of choosing the 
subset of predictors in a regression problem including “forward”, 
“backward” and “stepwise” methods [21]. These methods do not 
necessarily give the best subset and they contain somewhat subtle 
flaws in the statistical assumptions they make [14,19]. An 
exhaustive search of all possible combinations of predictors and 
transformations takes a prohibitively long time.  

2.2 Previous Work 
For several reasons, an evolutionary algorithm (EA) approach to 
determining the form of a logistic regression model is quite 
natural as a regression model satisfies many of the rules of thumb 
suggesting when an EA approach may be successful [28]. First, 
the search space is very large due to the many predictors, the 
many possible transformations of continuous variables, and the 
various ways of collapsing levels of categorical variables. An 
exhaustive search of all possible combinations of options is not 
feasible. Second, the search space is not well understood and may 
have many local optima. There is no reason to believe a gradient 
approach will do well. Third, the fitness function is noisy. The 
fitness of a regression model is evaluated on a test sample of 
observations and has some random error. Methods such as cross-
validation can be used to smooth out these errors by evaluating 
fitness of a solution on many samples, but still there will be 
uncertainty. EAs can perform robustly in the presence of small 
amounts of noise. Finally, finding a good, but not necessarily the 
best possible regression model in terms of predictive accuracy, is 
acceptable. 

     Some research has already been done on how to use EAs to 
solve regression problems. Koza used genetic programming 
techniques to perform “symbolic regression” -- finding the 
functional form as well as the coefficients in fitting a curve to 
data points [25]. Siedlecki and Sklansky [34] studied the use of 
genetic algorithms (GAs) [11,17,28] for the general problem of 
predictor selection. Some studies have used a GA to select 
predictors in logistic regression [36,37]. They did not consider 
transformations of predictors, which potentially can yield a more 
accurate model.  They also did not consider nominal-scale 

predictors, which occur often in real-world datasets. Krause and 
Tutz used a GA for predictor selection and for finding the best 
transformations in a generalized additive model, which is less 
interpretable than a standard logistic regression model because 
there is no parametric form for the predictor transformations 
[26,27]. They also did not consider nominal-scale predictors. 
Broadhurst et al. use GAs only as a method for variable selection 
in a linear regression problem. [5]. 

     Bala et al. use GAs to create a predictive model but the 
underlying learning machine optimized by the GA is a decision 
tree rather than a logistic regression model. This is an interesting 
approach as a decision tree implicitly handles transformations of 
predictors, interactions among predictors, nominal-scale 
predictors and predictors with missing values. Thus the GA is 
used only for selection of predictors. A single predictor tree, 
however, has several disadvantages including instability in 
predictions, relatively poor predictive accuracy, and difficulty in 
interpretation for trees of larger size. Combinations of trees 
eliminate some of these disadvantages at the cost of a great loss of 
interpretability.  

 
3. THE GENETIC ALGORITHM 
In this paper we describe a technique of using a GA to optimize a 
logistic regression model. The GA is used to determine the subset 
of interval-scale predictors in each model, the functional form of 
each of these predictors, and the subset of nominal-scale 
predictors in the model. We use a conventional bit-encoded GA. 
Unless otherwise noted, the following GA parameters are used: 
population size of 50, 50-70 generations, bit-flip mutation with 
rate 0.01, two-point crossover with rate 0.7, best fitness individual 
appears unchanged in next generation with probability one 
(“elitism”), tournament selection of size n=4 and probability 0.9 
to select the most fit individual among the four. Most results are 
presented as averages over multiple runs, each with a different 
random number seed. Standard deviations calculated from the 
values of multiple runs. More details on the bit encoding of the 
GA are given in Section 5. 

     Each individual in the population represents the choices made 
regarding which predictors to include and how to transform them. 
Given these choices the fitness can be evaluated. The fitness has 
two components: predictive accuracy and complexity. Here, we 
define complexity as the fraction of total predictors which are 
used in the model. For example, if a dataset contains a total of 100 
predictors and a specific model includes only 25 of them, the 
complexity of that model is 0.25. This complexity is a measure of 
the number of degrees of freedom of a specific model. 

     Several methods of evaluating predictive accuracy were 
considered. Bootstrap methods [7,13] were discarded in favor of a 
five-fold cross-validation [20,30,32] method. In both cases, area 
under the ROC curve (AUC) is used as the measure of predictive 
accuracy [20,35]. The ROC curve is a plot of true positive rate 
versus false positive rate, with a larger area under the curve 
indicating a model with higher predictive accuracy. In statistical 
terms, AUC is equal to the value of the Wilcoxon-Mann-Whitney 
test statistic and is also the probability that the classifier will score 
higher on a randomly drawn positive sample than on a randomly 
drawn negative sample.  
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     In this study, the fitness function to be maximized is defined as 
a linear combination of AUC and complexity: 

fitness = AUC - α(complexity) 

where AUC ranges from 0.5 (random guessing) to 1.0 (perfect 
predictions), complexity ranges from 0 (no predictors are used in 
model) to 1 (all predictors are used in model), and α is set to 0.1 
unless otherwise noted. Larger values of AUC and smaller values 
of complexity are desirable. The R software environment is used 
for all facets of analysis presented in this paper unless otherwise 
noted. 

4. DESCRIPTION OF DATASETS 
Several datasets were used to evaluate the results of the GA-tuned 
logistic regression model. Each dataset was required to satisfy the 
following conditions: 1) the response should be binary so logistic 
regression is a suitable candidate model, 2) the number of 
observations should be at least several hundred to minimize 
problems that arise when developing a predictive model for small 
datasets, 3) the number of predictors should be relatively large 
(e.g. > 10) to provide a problem in which an exhaustive search is 
truly prohibitive, and 4) the amount of preprocessing already 
performed on the dataset should be minimized. Requirement 4 is 
included because, for example, some datasets have already had 
nominal-scale predictors transformed into numeric predictors by 
an unknown or possibly sub-optimal method. Some details  

4.1 M2007 Dataset 
This dataset, a subset of the dataset used in the M2007 data 
mining competition, consists of 10,669 observations, a binary 
response and 166 predictors of which 38 are interval-scale and the 
rest binary. The response variable identifies those people who are 
likely to be high-revenue customers for a magazine company. The 
binary predictors are used in the model directly with no 
transformations. We use this dataset with many predictors in the 
first phase of algorithm development, when the GA is used only 
to select subsets of predictors. Five runs are performed and results 
are used to study some details of how the GA is operating and 
how its performance compares with forward, backward and 
stepwise selection methods.  

4.2 Email Spam Dataset 
This dataset is used extensively in Hastie et al. [20], where 
enough information is given to allow direct comparisons of 
performance between the GA-tuned logistic regression model and 
the models in Hastie. The spam dataset contains 4601 
observations, a binary response, and 57 interval-scale predictors. 
The response indicates whether or not an email is spam 
(unsolicited junk mail). We use this dataset in the second phase of 
algorithm development in which transformations of predictors are 
allowed. 

4.3 Graduate School Enrollment Dataset 
This dataset consists of 2665 observations, a binary response and 
35 predictors of which 24 are interval-scale and 8 are nominal-
scale. The binary response indicates whether or not a student 
admitted to a graduate program at the University of Central 
Florida (UCF) chooses to enroll. We use this dataset in the third 
phase of algorithm development in which nominal-scale 
predictors are included. 

5. EXPERIMENTS AND RESULTS 
5.1 Interval-scale Predictors Only 
We first used the M2007 dataset to study the performance of the 
GA compared to several standard methods of predictor subset 
selection. Each individual in the population consists of 166 bits, 
one for each predictor in the dataset. It was found, relative to the 
GA parameters stated in Section 3, that a smaller population, a 
smaller number of generations, less or no elitism, and larger 
population initialization probabilities generally yielded models 
with lower fitness. Figure 1 shows the fitness of the best model in 
each generation with vertical bars indicating the standard 
deviation. After 50 generations, the GA clearly finds a logistic 
regression model which has a fitness at least equivalent to the best 
fitness reached by the forward, backward and stepwise predictor 
selection methods indicated by the three horizontal lines. The 
forward, backward and stepwise methods were implemented in 
SAS. 

 

Figure 1. Fitness vs. generation for M2007 dataset. 
 

 
Figure 2. AUC vs. complexity for run 1 on M2007 dataset. 
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     Figure 2 shows the predictive accuracy of the model as 
measured by AUC vs. the complexity of the model for the highest 
fitness model in each generation in run 1. The solid circle 
represents the 1st generation while the empty circle represents the 
50th generation. The trade-off between predictive accuracy and 
complexity as codified in the fitness function manifests itself as a 
zigzag line in this plot.   

     Figure 3 shows the AUC of the highest fitness model for GAs 
(plus signs) versus the number of predictors in the model. The 
solid circles are for forward, backward and stepwise methods. 
Generally speaking, models closer to the top left corner of this 
plot are better. The five runs of the GA produce relatively fit 
models, which tend to have higher AUC and/or lower complexity 
than the models resulting from forward, backward or stepwise 
methods. 

 

 
Figure 3. AUC vs. number of predictors for M2007 dataset. 

 

 
Figure 4. Number of predictors in best model vs. predictor 

index in run 1 on M2007 dataset. 
 
     Figure 4 shows that even in the last ten generations of one of 
the runs the number of predictors in the highest fitness model is 
not constant. Although each of these best models contains 25-30 
predictors, only 13 of the predictors are included in all ten best 
models. Thus there is a collection of different models which have 
similarly high fitness.  

     For the first 20 of the 166 predictors, Figure 5 shows which of 
them are included (indicated by an X) in the highest fitness model 
of each GA run and in the forward, backward and stepwise 
models. Several predictors such as 1 and 2 seem to be very useful 
as all methods include these predictors. Other predictors such as 
11 and 20 are found to be useful only by the GA-tuned logistic 
regression model. This table also provides clear evidence that the 
best models found by the GA are not identical for the different 
runs. 

 
Figure 5. A comparison of which predictors are included in 

various models for the M2007 dataset. 

5.2 Addition of Transformations 
The GA was then modified to allow for transformations of the 
interval-scale predictors. Figure 6 shows, from top to bottom, the 
following twelve transformations allowed for each predictor x: x2, 
x1.75, x1.5, x1.25, x1, log(x), x0.5, x0.33, x-0.33, x-0.5, x-1, x-2. These 
transformations are encoded by four bits for each predictor. If the 
number of these four bits with value 1 is zero or one, then there is 
no transformation (x1). This choice, plus the relative sparseness of 
1s in the initial population, biases the initial search to predictors 
with no transformation.  Each predictor is now encoded by five 
bits – one for the ON/OFF switch and four for the transformation. 
The spam dataset was used to study the GA performance with this 
modification. Each  individual now consists of 57*5=285 bits.  
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Figure 6. The 12 transformations allowed for each predictor. 

 

 
Figure 7. Fitness vs. generation for spam dataset. 

 

 
Figure 8. AUC vs. generation for spam dataset. 

 
Figure 9. Complexity vs. generation for spam dataset. 
 
Figures 7, 8 and 9 show the best fitness in each generation as 

well as the tow components of fitness, AUC and complexity. In 
the later generations, a combination of small increases in AUC 
and decreases in complexity drive the fitness higher. As a 

reference point for the complexity plot, note that a model using 10 
of the 57 available predictors has a complexity of (10/57)*0.1 = 
0.0175. 

The highest fitness model in each run is next trained on the 
same data used to train by Hastie et al.[20] Then this model is 
used to predict the 1536 observations in the test set, as defined by 
Hastie, to compare directly with Hastie’s results. A model in run 5 
with only 9 predictors had the lowest misclassification rate of 
6.6% in the test set. This can be compared to the GAM model in 
Hastie which has 16 predictors and a misclassification rate of 
5.3%. Note that although the GA-tuned logistic regression model 
has a larger misclassification rate, it is a simpler model because it 
has only about half as many terms and its predictors have a well-
specified functional form. In the GAM model of Hastie, the term 
for each predictor is the result of a scatter plot smooth which does 
not give a parametric form. Other models developed by Hastie for 
this dataset include MART (4.0% error, 48 predictors), MARS 
(5.5% error, 60 independent basis functions), and CART (8.7% 
error, 17 predictors). The MART, MARS and CART models all 
include interactions between predictors making them more 
difficult to interpret. The 6.6% error and 9 predictors of the GA-
tuned logistic regression model is a much more compact 
representation of the dataset but its predictive accuracy is not as 
great as some of Hastie’s models. Note that changing the 
definition of the fitness function, specifically decreasing the α 
parameter, would result in a more accurate but more complex 
model.  

5.3 Addition of Nominal-Scale Predictors 
Finally, the graduate enrollment dataset is used to study how well 
the GA performs. A smoothed weight-of-evidence method is used 
to convert the multiple, distinct levels of each nominal-scale 
predictor into a single numeric predictor [15,33].  The initial 
population probability was increased from 0.1 to 0.2 to achieve a 
higher AUC since slightly more complicated models result. The α 
parameter in the fitness function was decreased from 0.1 to 0.05 
also to produce models with a higher AUC. The specific goal for 
this dataset was to find a model with an AUC value greater than 
or equal to 0.784, but with a complexity lower than that of the 
model currently being used for this dataset by the UCF Division 
of Graduate Studies. The current model has an AUC of 0.784 with 
19 terms. Nine of the terms are main effects (single predictors) 
and 10 of the terms are multiplicative interactions of two 
predictors. Due to the many interactions, the model is more 
complicated than a model with 19 main effect terms. The GA-
tuned logistic models have AUC of about 0.784 or 0.785 on 
average (see Figure 10). More importantly they have only 11 
predictors and all are main effect terms. This is much less 
complicated than a model with 19 terms with interactions.   

     Figures 11 and 12 show the fitness and complexity of the best 
model in each generation. The initial fitness is driven by an 
increase in complexity which leads to much higher predictive 
accuracies, but this trend is reversed in the later generations when 
the GA is able to find higher fitness models with lower 
complexities. Figure 13 shows the Hamming mean value for all 
unique pairs of individuals in the population. It clearly shows that 
the diversity of the population increases initially as the GA 
explores the search space and then decreases in later generations. 
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Figure 10. AUC of best model vs. generation for graduate 

enrollment dataset. 
 

 
Figure 11. Best fitness vs. generation for graduate enrollment 

dataset. 
 

 
Figure 12. Complexity of best model vs. generation for 

graduate enrollment dataset. 

 
Figure 13. Hamming mean vs. generation for graduate 

enrollment dataset. 
 

6. CONCLUSIONS 
Using several different datasets, we have demonstrated the use of 
a genetic algorithm to tune a logistic regression model which 
handles transformations of interval-scale predictors as well as 
automatic incorporation of nominal-scale predictors. The 
technique can be used to find a logistic regression model of high 
accuracy and relatively low complexity.  

     The work presented here can be extended in several ways. 
Terms representing multiplicative interactions between predictors 
can be allowed in the regression model. This may increase fitness 
at the cost of reduced interpretability of the model. The smoothing 
parameter for nominal-scale predictors can be allowed to vary. On 
a broader scale, the use of multiobjective genetic algorithms 
[6,9,10] can be investigated. In this paper, we have used a 
weighted linear combination of two conflicting objectives to 
produce a single objective function. With a multiobjective GA, 
however, the conflicting objectives remain separate and the 
algorithm yields a collection of best fitness models with various 
combinations of values for the different objectives.   Some work 
has already been done with multiobjective GAs in predictive 
modeling [4,24] as there is often a trade-off between, for example, 
between raw performance and complexity of a predictive model.   

     The technique described in this paper still has the disadvantage 
of not incorporating missing values automatically. Various kinds 
of selection, mutation, and crossover were not explored. Each 
fitted model contains information about how significant each 
predictor is based on the estimates of the coefficients and their 
standard errors. Perhaps this information can be fed back to the 
GA to improve performance. There are many avenues for future 
investigation. 
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Reproducing an Evolution of Artificial Plants

Tommy McDaniel
University of Central Florida
4000 Central Florida Blvd.

Orlando, FL 32816
tommy@cs.ucf.edu

ABSTRACT
In this paper, a reproduction of experiments from Marc Tou-
ssaint’s paper Demonstrating the Evolution of Complex Ge-
netic Representations: An Evolution of Artificial Plants [11]
will be described.

1. INTRODUCTION
The author’s original intention was to do a project involv-
ing robotics. However, after consultation with Dr. Garibay,
it was decided that such a project would be too risky for
the scope of this semester project, since it had two parts
that could go wrong: the evolutionary part, and the neural
network part. A couple of ideas were presented to the au-
thor: one was to do an updated version of a survey that was
published a few years ago, and the other was to implement
Toussaint’s paper. The latter option was chosen.

1.1 Overview of the Paper
The paper that was implemented describes a method of
evolving artificial plants. The plants are represented us-
ing a form of L-systems, as proposed by Prusinkiewicz and
Hanan [10]. These consist of structures similar to context-
free grammars. A plant consists of an embryo Ψ and a set
Π of operators 〈π1, π2, . . . , πn〉. The embryo consists of a
string of symbols from the alphabet Σ = {A, B, C, . . . , P}.
The operators πi consist of a promoter, which is a single
element of Σ, and a string of symbols from Σ, which was
never given a clear name in the paper1.

Starting from the embryo Ψ, one creates Ψ1 by taking each
operator πi in order and replacing each instance of its pro-
moter in the embryo with its genes. One creates Ψ2 in the
same manner, but applying the operators to Ψ1 this time.
This process is continued until an arbitrary stopping point
is reached, at which point the final Ψn represents the plant’s
phenotype.

1This author referred to these strings as genes in his imple-
mentation of the paper.

Computing plant fitness requires simulating a three-dimensional
version of the plant. Given an overhead view of the plant,
every green pixel2 adds to the fitness an amount dictated
by the height at that pixel. This is counterbalanced by a
negative weight, calculated based on how big the plant is.3

The concept of generative representations is certainly not
unique to this paper. Hornby and Pollack have published
much research on generative representations in recent years
[1, 2, 3, 4, 5, 6, 7, 8]. Kicinger, Arciszewski, and De Jong
recently compared the use of parameterized representations
versus generative representations to design skyscrapers [9].
The main idea of Toussaint’s paper was what it called 2nd-
type mutations. These were mutations of the operators that
were designed to be neutral (i.e., that resulted in the same
phenotype).

2. PROCEDURE
Toussaint stated in his paper that source code was available
on his website. However, no such source code was to be
found, and the author contacted Toussaint requesting a copy
of the code. After a communications problem, Toussaint was
never heard from again. It was at that point that the author
began implementing the entire paper on his own.

The author chose C as his implementation language. Tous-
saint said in his paper that “Evolving such plant structures
already gets close to the limits of today’s computers, both,
with respect to memory and computation time.” Therefore,
performance was of the essence. The graphical parts were
developed with the OpenGL family of toolkits. Sampling
from Poisson distributions was done with the free GNU Sci-
entific Library (GSL).4 Images of the plants were created
with the free GD library.5 All development was done in
Linux.

The first step was to be able to simulate arbitrary plants,
without regard for finding their fitness or evolving their rep-
resentations. This simulator portion was successfully cre-
ated and tested. Obtaining overhead information about the
plants simply required placing the camera at the proper po-
sition over the plant and reading OpenGL’s green and depth
buffers.

2Since leaves and only leaves are green, although, in a sim-
ulation, the choice of green is arbitrary.
3This is literally an estimate for how much the plant weighs.
4http://www.gnu.org/software/gsl
5http://www.libgd.org
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The evolutionary part, however, did not go nearly as smoothly.
The main problem was that C does not have built-in string
data structures, so one was written by hand and expanded
upon as the need arose. A string data structure was an ob-
vious need, since the lion’s share of dealing with these rep-
resentations involved string manipulation, due to the fact
that we are basically dealing with context-free grammars.
However, rich string data structures are extremely prone to
off-by-one errors. This part of the program took the vast
majority of the development effort.

2.1 Experimental Parameters
The experiments had many parameters that could affect
the outcome. The values used are documented in Table
1. Most values came from Toussaint’s original experiments.
The main difference is the value of %, which was found by
trial and error; values that were too small quickly resulted
in enormous, disorganized plants that led to expected sim-
ulation times measured in months for a single run, while
values that were too large resulted in plants being unable to
evolve. The values of α and β were fixed, as in Toussaint’s
second trial, due to the fact that otherwise they tended to
go as close to zero as possible. Plants were initialized with
the same genotype as in Toussaint’s experiments.

All runs were of 1,000 generations. The only known diver-
gence from Toussaint’s implementation is in how a plant’s
weight is calculated. Toussaint used a recursive function to
calculate the weight, whereas this implementation simply
counts the number of phenotypic elements (branches and
leaves).

3. RESULTS
After initial testing, seven quality runs were done with the
final settings. The statistics of the best plant of each run
are in Table 2, and aggregate statistics of these best plants
are in Table 3. An interesting phenomenon that occurred
in many cases6 was that the best plants were produced well
before the end of the run, usually shortly after fitness began
to increase significantly from near zero, followed by a decline
for the rest of the run.

There is an interesting correlation between embryo size and
fitness, as shown in Table 4. If we ignore run 3, then for
the other six runs, increasing embryo sizes result in lower
fitnesses. Since a small embryo must of necessity rely heavily
on its operators to create a large plant, whereas a large
embryo can be closer to a direct encoding, this appears to
support the utility of generative representations.

3.1 Run 1
The average fitness, best fitness, and standard deviation of
the fitness per generation are plotted in Figure 1. The best
plant is shown in Figure 2, and its operators are listed in
Table 5. Of the seven plants listed in this paper, this one
had the second-largest embryo and phenotype, but the least
operators and second-smallest weight. Its identifying char-
acteristic is its apparent thickness, which is caused by its
second operator, which produces 10 leaves rotated about a
single point. This effect is greatly magnified by its first op-
erator.

6Both in these results and in unpublished results.

3.2 Run 2
The average fitness, best fitness, and standard deviation of
the fitness per generation are plotted in Figure 3. The best
plant is shown in Figure 4, and its operators are listed in
Table 6. This plant had by far the largest embryo, and the
second-lowest fitness, but was otherwise unremarkable. The
looping structures are caused by its first operator, which
produces four leaves in a row, followed by a single rotation
of δ degrees.

3.3 Run 3
The average fitness, best fitness, and standard deviation of
the fitness per generation are plotted in Figure 5. The best
plant is shown in Figure 6, and its operators are listed in
Table 7. This plant had the smallest phenotype size, lowest
weight, and lowest fitness. It is notable that this small,
“premature” plant emerged in the second-fastest time of all
the runs. It is distinguished by the polygonal structures that
its operators create.

3.4 Run 4
The average fitness, best fitness, and standard deviation of
the fitness per generation are plotted in Figure 7. The best
plant is shown in Figure 8, and its operators are listed in
Table 8. This plant emerged very quickly, nearly 300 gener-
ations faster than the best plant of any other run, and had
the second-highest weight. The degree to which fitness fell
into a continual decline for the rest of the run after its emer-
gence is conspicuous. Similarly to run 2, the hoops that form
the plant are caused by the interaction of the three opera-
tors, which combine to form a structure consisting of many
sides with four leaves each followed by a single turn of δ
degrees.
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Parameter Value Description
δ 20 Rotation angle
b 20 Length of each side of plant bounding cube
T 1 Iterations through the list of operators

% 3× 10−7 Plant weight multiplier
α 0.01 First-type mutation rate
β 0.3 Second-type mutation rate
µ 30 Parent population size
λ 100 Offspring population size

Mmax 1,000,000 Phenotype size limit
Rmax 100 Maximum operators per plant
Umax 40 Size cutoff for symbol duplication mutations

Table 1: Experiment Parameter Values

Run 1 2 3 4 5 6 7
Generation 728 852 684 398 960 959 981
Embryo size 10,858 42,722 2,141 5,830 248 1,129 2,704

Phenotype size 442,549 166,950 86,362 208,299 156,310 203,856 835,998
Number of operators 2 3 5 3 8 6 8

Weight 76,440 145,229 70,044 180,499 146,596 189,695 160,542
Fitness 0.26016 0.248408 0.218884 0.391968 0.469252 0.447236 0.44273

Table 2: Statistics of Best Plant per Run

Average Standard Deviation
Generation 794.6 210.7
Embryo size 9,376 15,137.8

Phenotype size 300,046.3 261,169.5
Number of operators 5 2.45

Weight 138,435 47,467.8
Fitness 0.354091 0.107628

Table 3: Aggregate Statistics of Best Plants per Run

Run 5 6 7 4 1 2
Embryo size 248 1,129 2,704 5,830 10,858 42,722

Fitness 0.469252 0.447236 0.44273 0.391968 0.26016 0.248408

Table 4: Correlation Between Embryo Size and Fitness

Length of Genes Operator
3 D → AAA
64 A → ADDDDDDDDDDDDDDDDDIEEIEEEEIEEIEEDDDDDDDDIEEKEEMEEEEILEEIEEIEEIIE

Table 5: Operators of Best Plant of Run 1

Length of Genes Operator
9 A → IAIAIAIAB
1 C → F
2 F → IA

Table 6: Operators of Best Plant of Run 2
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Figure 1: Average fitness, best fitness, and standard deviation of fitness in run 1

(a) Overhead view (b) Glamour view

Figure 2: Best plant of run 1, generation 728, fitness = 0.26016

Length of Genes Operator
7 A → DOOFFDD
35 F → OEIIMAEEOPJELAEIIPIPIFIHEEGEEEEEEEE
2 P → NA
2 E → IA
1 N → I

Table 7: Operators of Best Plant of Run 3
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Figure 3: Average fitness, best fitness, and standard deviation of fitness in run 2

(a) Overhead view (b) Glamour view

Figure 4: Best plant of run 2, generation 852, fitness = 0.248408

Length of Genes Operator
7 F → FFFFFFE
7 F → IDAIAMM
2 M → IA

Table 8: Operators of Best Plant of Run 4
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Figure 5: Average fitness, best fitness, and standard deviation of fitness in run 3

(a) Overhead view (b) Glamour view

Figure 6: Best plant of run 3, generation 684, fitness = 0.218884
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Figure 7: Average fitness, best fitness, and standard deviation of fitness in run 4

(a) Overhead view (b) Glamour view

Figure 8: Best plant of run 4, generation 398, fitness = 0.391968
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3.5 Run 5
The average fitness, best fitness, and standard deviation of
the fitness per generation are plotted in Figure 9. The best
plant is shown in Figure 10, and its operators are listed in
Table 9. This plant had the smallest embryo, the second-
smallest phenotype, the highest fitness, and tied for the most
operators. This was the first run where fitness increased
nearly constantly after it got going, with its best plant ap-
pearing at the second-latest time of any of the runs.

3.6 Run 6
The average fitness, best fitness, and standard deviation of
the fitness per generation are plotted in Figure 11. The
best plant is shown in Figure 12, and its operators are listed
in Table 10. This plant had the second-smallest embryo,
the highest weight, and the second-highest fitness. It has
a markedly polygonal structure, with the polygons offset
slightly from each other. This run was marked by a pro-
longed period of increasing fitness, followed by somewhat of
a decline, and ending with a final burst that produced bet-
ter plants than had been produced before the decline. This
was the only run whose best plant came during an upswing
following a meaningful period of decline.

3.7 Run 7
The average fitness, best fitness, and standard deviation of
the fitness per generation are plotted in Figure 13. The best
plant is shown in Figure 14, and its operators are listed in
Table 11. This plant emerged the latest of any of the plants
in this paper, had by far the biggest phenotype, and tied for
the most operators. It has a wide, ribbon-like structure.7

4. CONCLUSIONS
The experiments from Toussaint’s paper can be considered
to have been successfully duplicated. While C or something
similarly fast may have been the wise choice for implement-
ing this paper, it would have probably been much better
to use preexisting string data structures instead of creating
new ones from scratch. In hindsight, this project had the
same problem as a robotics project: multiple points of fail-
ure. A robotics project could have had problems with either
the evolutionary part or the neural network part, but this
project also had two points of failure, the evolutionary part
and the graphical part.

Source code and data can be found at the author’s website
at http://cs.ucf.edu/~tommy.
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Figure 9: Average fitness, best fitness, and standard deviation of fitness in run 5

(a) Overhead view (b) Glamour view

Figure 10: Best plant of run 5, generation 960, fitness = 0.469252

Length of Genes Operator
36 A → OOOOCAAIIAIJIAIHIHEDAGIIAPOAIMAOACOO
40 O → ICAAAIIDIIMIDDIIOMICPIPJMICIDAAAADABAAAC
5 A → IIIII
3 I → IAI
3 M → AIA
3 L → HOE
1 N → L
1 L → L

Table 9: Operators of Best Plant of Run 5
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Figure 11: Average fitness, best fitness, and standard deviation of fitness in run 6

(a) Overhead view (b) Glamour view

Figure 12: Best plant of run 6, generation 959, fitness = 0.447236

Length of Genes Operator
13 E → FFFFFFFFFIIIA
60 F → FEIAEIIAGIAIMIIKIIJIIFIAIIAIKEIAEIIAGIJNKHIIMIIFIIAIAIAFIAIA
2 F → FF
4 F → GGGG
0 L →
4 G → IIIA

Table 10: Operators of Best Plant of Run 6
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Figure 13: Average fitness, best fitness, and standard deviation of fitness in run 7

(a) Overhead view (b) Glamour view

Figure 14: Best plant of run 7, generation 981, fitness = 0.44273

Length of Genes Operator
8 I → AAHNECLI
10 B → INIAAAIBIA
17 A → BBILMMMMMMMMMMMEA
12 M → BBIHKCGBEGEA
2 A → OA
5 B → HEEEE
2 O → BI
2 B → II

Table 11: Operators of Best Plant of Run 7
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ABSTRACT
This paper investigates a primitive implementation of an
instinct-based behavioral model in an artificial agent. It
serves as an early attempt in devising an artificially intelli-
gent entity whose decisions are based on instinct, as defined
by field of ethology. The agent behavior is represented as a
finite state machine. Three experiments were conducted to
investigate two key features of the behavior model: 1) the
external environment, and 2) the number of states needed
to represent behavior. The resultant instinctive behavior set
was based on a very simple representation structure whose
evolutionary mutability is sensitive to the stability of its en-
vironment factors. In general, the primary goal of this work
is to use a genetic algorithm to automatically produce a
basic behavior representation based on instincts.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: (Distributed Artificial In-
telligence)Multiagent systems

General Terms
Behavior Representation

Keywords
instincts, evolution, genetic algorithm

1. INTRODUCTION
Creating agent behavior representations is a time-consuming
effort, often requiring meticulous attention to small details
and countless hours of development and testing [1]. An au-
tomatically generated behavior model could replace these
knowledge-based models, eliminating this extended devel-
opment period. This paper investigates producing an agent
behavior representation based on instincts without human
intervention. The primary motivation of this endeavor is to
devise an agent behavior that is driven by a set of primitive,
innate behavioral mechanisms.

A specific application for an instinct-based behavioral model
is the action-response systems of artificial agents in a simu-
lated environment. These agents may exist as autonomous,
interactive entities in training scenarios, such as those found
in military exercises [9] or in video games [5]. In many cases,
these agents are implemented with scripted behaviors, re-
sulting in actions dictated by a simple input-output lookup
table [12]. The work in this paper presents an extremely
primitive behavior model of very basic instincts. The idea is
to provide a method to automatically derive this instinctive
behavior for use in more complex behavior representations,
such as those found in the aforementioned applications.

In this paper, the evolution of innate behaviors in actual
animals will be simulated using a genetic algorithm-based
method in a population of artificial agents. These evolved
behaviors will be viewed as instincts, as defined by ethol-
ogy. Two particular issues will be examined pertaining to
this evolution of intrinsic behaviors. The first will concern
the data structure representation of the agent behavior. The
second issue concerns the role of environment in the evolu-
tionary process. The experiments in this work were designed
to provide insight into these items.

The following sections give some related background infor-
mation, followed by a detailed account of the work at hand,
from the problem formulation to the experiment results.
The paper will conclude with a wrap-up discussion, a brief
mention of additional work to be done, and a conclusion
section.

2. BACKGROUND
The impetus for this work remains the idea that an agent’s
behavioral response set could feasibly be generated using
evolutionary means, without the need for an extended pe-
riod of hand-modeled behavior development. In nature, in-
stincts serve as an automatic behavior set for which animals
base their primitive responses upon. According to the work
of ethologists, instincts result from a process of behavioral
evolution [2]. For artificial agents, evolutionary algorithms
could also be applied to produce similar effects. With this
in mind, a few assumptions will be made regarding agent
behavior. The first assumption claims that instinctive be-
havior in animals is established as a priori constructs. This
suggests that no pre-learned skills are needed to execute in-
stinctive actions. Secondly, instincts are the result of evolu-
tion running its course upon the genetic makeup of animals.
Thus, both environmental and natural factors have an in-
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fluence on the instinctual characteristics of every species.
This section provides background material regarding these
assumptions.

2.1 Instincts
When discussing natural behavior, the idea of instincts im-
mediately comes to mind. Natural instincts result from a
process of behavioral evolution [6]. Over the course of mil-
lions of years, certain instincts may withstand the test of
time in an animal species. They essentially serve as a priori
behaviors instilled in an animal at birth, often directly re-
lated to a being’s ability to survive to adulthood. Instincts
differ from reflexes in that the former deals with an indi-
vidual’s ability to respond in a rationally motivated man-
ner, while a reflex simply is an intrinsic, physiological im-
pulse, usually triggered at a muscular, rather than cognitive,
level [10]. It is also noted that instincts are widely regarded
in modern psychology as general guidelines or motivations,
rather than specific skills or actions.

2.2 Behavioral Evolution
Ethology describes the study of animal behavior from a bi-
ological, as opposed to psychological, point of view. Hence,
ethology is a separate field from psychology, that offers its
own stance on instinctive behavior. In general, ethologists
examine instincts under an empirical, physiological light,
while psychologists treat instincts with a more abstract,
comparative approach.

As mentioned before, the development of instincts in animals
is viewed as an evolutionary process - Lorenz established this
standpoint as a staple of ethological studies [2]. Over long
periods of time, multitudes of organisms are spawned with
varying flavors of innate tendencies. As per the mechanics
of evolution, only those organisms that are good enough to
survive will be able to pass on their genetic make-up to the
next population. Within this genetic coding lies the set of
intrinsic instincts. Tinbergen asserts that these instincts
exist as Fixed Action Patterns (FAPs) [14]. FAPs are those
behaviors that are unlearned but are essential for an animals
survival. They are triggered by innate releasing mechanisms.
Examples of FAPs include bees mating dances, gulls egg-
laying patterns, and minnows feeding behaviors.

2.3 Genetic Algorithms and Evolving Behav-
iors

With the advent of evolutionary algorithms in computer sci-
ence, it is easily envisioned how such solutions may be ap-
plied to this problem of devising instinctive behaviors for
artificial entities. Stanley, Bryant, and Miikkulainen [13],
and Portegys [11] have approached this idea of performing
genetic algorithms to produce innate behavior sets. Stanley
et al. [13] present the idea of evolving agents to improve
their survival fitness in a video game environment. The skill
set of these agents is primarily of a military nature. Porte-
gys [11] evolves an agent that is skilled at the Monkey and
Bananas problem.

While both of these efforts promote the evolution of be-
haviors, their evolved behaviors are often characterized as
activities that require a high level of skill. The purpose of
this paper is to present a method that operates at a very

basic skill level - behaviors often described as instincts. The
works of Eck [3] and Inoue and Kobayashi [8] provide good
starting points in this particular realm. Both of these pa-
pers use a simple artificial life model that deals with basic
predator-prey dynamics in a grid-based world. This paper
serves to build upon the foundations set forth by these con-
tributions.

3. PROBLEM FORMULATION
In this work, the simple instinct of feed-or-flee will be exam-
ined. The environment that the agents reside in consists of
two consumable items: food and poison. The food sources
have a positive effect on the agents, while the poisons have a
negative effect. Additionally, multiple agents co-exist in the
world, competing for the food sources. Finally, four outer
walls will limit the environment’s spatial boundaries. The
agents will have to adapt a response to encounters with these
walls, amongst other items in the environment.

The population of agents will live for a year in the envi-
ronment with replenishing food and poison supplies. Each
agent carries its own health level, whose value is directly
related to its movements, and food/poison consumption.
This health indicator directly translates to the agent’s fit-
ness value, which will be introduced in a later section.

4. APPROACH
The implementation of the problem is separated into three
sub-components: 1) environment, 2) agent representation,
and 3) genetic algorithm. The following sections give a de-
tailed description for each of these parts.

4.1 Environment
The environment consists of a 50 unit by 50 unit grid, where
each grid space is occupied by either an agent, a food source,
a poison source, or an empty space. Only one item can oc-
cupy a grid space at one time. Figure 1 shows four scenarios
in which the food (designated as a group of three green cir-
cles) and the poison (red circles with X’s) exist in different
amounts. The agents are denoted as black circles with a line
segment indicating which direction it is facing.

The consumable items (food and poison) remain at a con-
stant number at all times. Their placements, however, are
not fixed. Food grows in randomly distributed clumps, while
poison regenerates in a uniform random distribution across
the grid. Each environment is characterized by its food and
poison source counts. These values can vary in various com-
binations of quantities. A plentiful food scenario has a large
portion of the world populated by food items. Moderate food
scenarios have patches of food clusters and empty areas scat-
tered throughout the landscape. Worlds with equal food and
poison are often characterized by a uniform random distri-
bution of poison amongst small groupings of food. Plentiful
poison scenarios are riddled with poison sources with a very
sparse amount of food scattered throughout.

A stable environment describes the situation where the food
and poison quantities remain constant from generation to
generation. A dynamic, or unstable, environment occurs
when these consumable counts vary drastically between gen-
erations. The effect of environmental stability on behavior
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Figure 1: Enviroment scenarios (clockwise, starting from top left): plentiful food scenario, moderate food
scenario, equal food and poison scenario, and plentiful poison scenario. Food is designated as a group of
green circles, poison sources are the red X’ed out circles, and agents are the black circles with directional
line segments.

CAP5512: Evolutionary Computation at UCF, Student Papers, Spring 2007

38



evolution is examined in the experimentation section of this
paper.

4.2 Agent Representation
Unlike the consumables, agents may roam freely throughout
the environment. They cannot move further than the outer
limiting walls of the world, nor can they move to any space
occupied by another agent. An agent faces a cardinal direc-
tion (north, east, south, west), and its only sensing capabil-
ity is the ability to see what item is immediately in front of
it (empty space, food, poison, other agent, or wall). When
an agent moves to a food or poison space, it eats that item.
Eating food gives the agent 50 units of health, while eating
poison reduces its healthy by 100 units. Agents all begin
with a health of 100 units, and any movements (turn left,
turn right, move forward, move backward) decrease their
health levels by 10 units. When an agent encounters a wall
or another agent occupying a space that it must move to,
the agent simply remains at its current grid space without
being assessed a health penalty.

Agent behavior is defined as a finite state machine (FSM)
of N -states. This representation is derived from Eck’s arti-
ficial life demonstration [3]. The FSM is encoded as a string
of real values in certain positions. For each state, there are
five transitions to other states, corresponding to each of the
agent’s five possible inputs. Agent input consists of which
item (empty space, food, poison, other agent, or wall) is di-
rectly in front of the agent at a certain time. A next state
and a next move (turn left, turn right, move forward, move
backward) is encoded into the behavior string. The number
of states in these behavioral models is completely arbitrary.
Figure 2 gives an example of an FSM-based behavior repre-
sentation for a 16-state agent behavioral model.

As mentioned before, the framework is flexible enough to
maintain an agent model with any number of states. All
agents in a single population, however, must share the same
number of behavior states. The encoded behavior string is
all that is needed to dictate agent responses. State zero
is the start state, and the environmental input drives the
agent’s next move. The FSM is clock-driven, where each
time step triggers a lookup on the agent’s behavior string.

4.3 Genetic Algorithm
Agent behavior is evolved using a traditional genetic algo-
rithm [7]. A novel aspect of this genetic algorithm is that
an FSM serves as the evolvable structure. Fogel [4] and Eck
[3] both provide early examples of FSM evolution, while the
latter provides direct support for the methods featured in
this research.

Each agent population is subjected to a randomly generated
environment for one generation, or 365 time steps. Regen-
eration of consumables occurs on a daily basis. After the
generation concludes, fitness levels are assessed for the pop-
ulation and a reproduction system of crossover and mutation
occurs to produce the next population. Fitness is calcu-
lated as the number of health units of an individual after
the generation concludes, with an initialized health of 100.
Two-point crossover happens at a 70% rate and mutation
occurs at 0.1%. Parent selection is 4-agent tournament with

Figure 2: Behavior FSM encoding example. This
figure shows a partial 16-state FSM and its equiva-
lent form as a string of real values. There are two
output values for each input (empty, food, poison,
agent, and wall) for each state. These output values
are: 1) the next move, followed by 2) the next state.
Also note that the default state is the zero state.
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Table 1: Genetic Algorithm Parameters
Generation Length 365 Time Steps
Selection Method Tournament, Size 4

Champ Selection Rate 0.9
Crossover Rate 0.7
Mutation Rate 0.001
Mutation Type 2-Point

a 90% champion selection. Table 1 summarizes the genetic
algorithm parameters used.

5. EXPERIMENTS
Three experiments were defined to investigate two important
aspects of this instinctive behavior system: 1) the optimal
number of states for the behavior representation, and 2)
the effect of the environment during behavioral evolution.
Experiment 1 pertains to the former, while experiment 2
and experiment 3 concern the latter issue. The next sections
describe each of these experiments.

5.1 Behavior Model Selection
The first experiment examines the optimal number of states
for the agent behavior model. Five FSM-based behavior
models were defined: 1-state, 2-state, 4-state, 8-state and
16-state. The 1-state behavior model was intended as a
control; it was not likely to produce any reasonable agent
response systems, due to its simplicity. The 16-state behav-
ior model represents a very highly complex agent cognition,
and it was featured as the default FSM size in Eck’s artificial
agent program [3].

Each behavior model was subjected to 2,000 environmen-
tal generations. 20 agents comprised the population size.
A food count of 1,750 units and a poison count of 50 re-
mained constant throughout the environment, constituting
the plentiful food condition. Individual poison sources and
food cluster placements were randomly distributed during
each regeneration (both at daily and generational levels).
The plentiful food scenario was chosen to allow all agents to
have easily accessible food sources at any given time. This
also prevented any behavior specialization, such as evolving
specific strategies for limited resource situations. The aver-
age fitness and best fitness was recorded for each behavior
model.

5.2 Effect of Static Environments
Experiment 2 shows how different environments affect the
evolution of behaviors. Nine different environments, de-
fined by different food/poison counts (10/0, 100/0, 1,000/0,
0/10, 0/100, 0/1,000, 10/10, 100/100, and 1,000/1,000) were
tested for 2,000 generations using 20 agents in each popula-
tion. The key ingredient in this experiment was the fact that
all runs featured environments with a stable food/poison
quantity from generation to generation.

This experiment compares and contrasts the eventual be-
havior responses, or instincts, that result from exposure to
different environments. In essence, this effect can be charac-
terized as the shaping of instincts by the environment. The
overall champion behaviors of each of the nine environments
were recorded and collectively analyzed.

5.3 Effect of a Dynamic Environment
The final experiment examines how a constantly changing
environment affects behavior evolution. A population of 20
agents was placed in an environment for 5,000 generations.
The addition of 3,000 extra generations allowed enough time
to see any behavioral convergence trends.

A dynamic number of food and poison sources (random in-
tegral powers of 2 between 1 and 512) was assigned in each
generation. A log of the average fitness and best fitness
for each generation was maintained. A comparison of these
statistics between runs with equal food counts (i.e. all gen-
erations with food count 512) was analyzed. The aim of
this experiment was to emulate a constantly-changing en-
vironment and how such a situation affects the behavioral
evolutionary process.

6. RESULTS
Data for each of the experiments were compiled and an-
alyzed. The following section discusses these results and
provides an analysis of each situation.

6.1 Behavior Model Selection
Figure 3 and Figure 4 shows the dominance of the 2-state
behavior model over the rest of the field. It is observed that
the 2-state version has a better overall average and best
fitness and that it converges faster than the other behavior
models.

The 1-state behavior model immediately flattens out, as ex-
pected. The 4-state behavior model performs second-best,
following the trend that less complexity equates to better
fitness values. The 8-state and 16-state models appear to
overlap each other in both best fitness and average fitness.
As a result of this experiment, the remaining experiments
concentrate on implementing the 2-state behavior model.
Figure 5 isolates the data recorded from just the 2-state
behavior model generations.

6.2 Effect of Static Environments
Figure 6 exhibits the best-so-far graph for the second exper-
iment. Figure 7 gives the resulting best behaviors from the
different environmental configurations. It is observed that
each scenario yields its own unique individual behavior. It
is not sufficient to conclude, however, that different envi-
ronments will produce different instincts. Analysis of the
individuals reveals certain trends between agent inputs and
responses. For example, the general trend for responding
to a poison encounter is to either turn or back away - very
rarely does the behavior direct the agent to go forward when
presented with a poison source. A similar trend occurs with
the food encounter, where the equal food and poison scenar-
ios and the plentiful food environments evolve agents that
will intend on eating the food.

The instinctive responses to the agent and wall inputs both
usually results in a turning or a forward progression move-
ment. The forward response would equate to a prevention
of health penalty, since an agent cannot progress into a wall
or onto another grid space occupied by another agent.

An interesting behavior trend is the tendency for the agent
to move backward. This response is most prevalent in the
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Figure 3: Average fitness for five types of behavior models. It can be seen that the 1-state behavior model
performs relatively poorly, as expected. The 2-state behavior model produces the most effective agents,
taking very little time to converge. The remaining behavior models all reach their convergence points by the
600th generation.

Figure 4: Best fitness for five types of behavior models. As seen in the average fitness graph, the 2-state
behavior model proves most effective of the entire field. The 1-state model remains the control agent, and
the remainder of the behavior models all peaked with best fitness values less than those of the 2-state model.
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Figure 5: Evolutionary trend for 2-State Behavior Model after 2,000 generations. Almost immediately, all
three curves (average fitness, standard deviation, and best fitness) converge to a linear asymptote. The true
strength of the 2-state model, however, is its superior fitness values over models using larger numbers of
states.

Figure 6: Best-so-far fitness values for nine different environment landscapes. Nine landscapes, defined by
their food and poison counts (10/0, 100/0, 1,000/0, 0/10, 0/100, 0/1,000, 10/10, 100/100, and 1000/1000),
exhibit different best fitness values as well as different convergence trends. The most plentiful food scenario,
1000/0, yielded the best overall fitness and reached this value very quickly. The 1000/1000, equal food and
poison scenario required the longest amount of time to converge toward its best fitness.
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Figure 7: Best 2-state behavior models for nine different environment landscapes. It can be seen that nine
unique FSM’s were generated after performing this experiment. Each of these behavior models, however,
appears to follow certain general guidelines, such as avoiding moving onto poison and moving toward food.

empty space encounter, yet it is also an evolved response for
food and poison inputs. Moving away from poison seems
quite intuitive, yet moving away from food is not. From
observing these particular agents in the environment, it ap-
pears as though the backward movement serves as a double
right turn (or 180 degree turn) to search for items directly
behind the agent. In fact, a lot of the evolved champion
agents use the backward move as a means to explore its sur-
roundings when food is present, or to use it as the primary
means to consume food items.

6.3 Effect of a Dynamic Environment
In this experiment, 5,000 generations were run, where each
generation was subjected to an environment with randomly
assigned numbers of food items and poison sources. Figure
8 and figure 9 isolate the generations that have 1-unit and
512-unit food quantities, respectively. The generations are
chronologically plotted and their average and best fitness
values were examined. Similar data trends were retrieved
for the remaining food quantity environments.

From each of these graphs, there is no evidence that be-
havioral performance improves during this dynamic envi-
ronment scenario. The instability of the disruption-prone
environment causes the evolutionary process to behave in a
similarly unstable fashion. Essentially, the carried-over best
fit agents from previous generations are rendered useless as
parents for the following, newly generated environment. In
essence, the dynamic nature of the environment causes each
previous population to be as effective as a randomly gener-
ated population.

This experiment reflects some intuitive tenets of genetic al-
gorithms. Since the environment landscape directly relates
to the fitness evaluation of the population, constantly chang-
ing the environment would nullify the perceived fitness of
previous populations. In nature, a similar effect would oc-
cur if the seasons changed on a daily basis. Animal species

would not be able to evolve cold weather and hot weather
behaviors in an efficient manner. In the case of this ex-
periment, the food and poison levels varied so wildly that
the agent populations could not effectively isolate which be-
haviors would be appropriate to pass onto its offspring as
instincts.

7. FUTURE WORK
Improvements for this work would include further develop-
ment of the graphical interface for the artificial life simula-
tion. A real-time visualization of the agent populations in
the environment was envisioned, but not fully realized.

A larger world and different population sizes would be ben-
eficial to create more realistic environments. Another en-
hancement would be to add a third dimension to the en-
vironment landscape. Also, agents may be equipped with
better sensors, allowing them to see a peripheral view of the
landscape, rather than just see what is directly in front.

Additional instincts may also be added, where a predator-
prey agent model could be implemented to develop insight
into the fight-or-flight instinct (a behavior that is closely
related to the feed-or-flee decision).

8. DISCUSSION
From the preceding experimental results, it is shown that a
very simple behavior representation in the 2-state model can
effectively emulate instinctive responses. The larger models,
up to 16 states, appear to require a more complex evolution-
ary process to fully realize their optimal configurations. As
predicted, the single state model proved to be insufficient
for this application. The superiority of the 2-state FSM be-
havior model accentuates the idea that simpler solutions are
often times the better solutions.

In terms of the environment’s effect on behavior evolution,
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Figure 8: Best fitness and average fitness for all generations with 1 unit of food in a dynamic environment.
No upward convergence patterns could be observed by this data set. The disruptive nature of the dynamic
environment effectively nullifies any best fit individuals from the previous generation.

Figure 9: Best fitness and average fitness for all generations with 512 unit of food in a dynamic environment.
As previously seen, these data points do not convey any remnants of evolutionary improvement due to the
unstable nature of the environment.
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it is asserted that instinctive behaviors can result from sub-
jecting a species to a stable environment for a prolonged
amount of time. Stability directly refers to the sustainment
of the same environmental factors from generation to gener-
ation. An unstable, ever-changing environment will cause a
species to evolve as if it is always being introduced to a new
environment with each generation. Henceforth, it can be
asserted that an instinctive response system is best evolved
from an environment of predictable and stable factors.

9. CONCLUSION
Ethologists maintain that the evolution of behaviors in a
species results in the existence instincts. This paper exam-
ines the emulation of behavioral evolution in nature as a
means to produce instinctive behavior in an artificial agent.
The two relevant issues involved in this endeavor are: 1) the
proper behavioral representation structure, and 2) the effect
of the external environment upon behavioral development.
Experiments showed that a genetic algorithm that evolved
the simplest behavior representation (a 2-state FSM) could
create an effective set of instincts. Different environment
landscapes results in different instinctive behaviors, although
similarities between input responses were discovered. A dy-
namically changing environment was considered a detriment
to the evolutionary development of instincts. Hence, accord-
ing to this research, evolved behaviors may be perceived as
instinctive if an agent population, with a simple behavior
model, is exposed to a stable environment for a substantial
number of generations.

Returning to the introductory thoughts of this paper, it was
proposed that a generalized behavior set generation method
could replace the hand-crafted agent modeling found in the
today’s modeling and simulation community. The work pre-
sented here suggests a brief step toward that realization,
where the key ingredient to this autonomous agent building
lies in the evolution of simple agents behaviors known as
instincts.
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Abstract

To  increase  search  performance,  domain  information  is 
commonly used to influence the bias of a representation and 
evolutionary  operators  for  speedup.  However,  phenotypic 
information about the solution is never used, partly because in 
most cases information must be generated manually and thus 
is not practical.

We suggest and algorithm which, given a set of similar fitness 
landscapes (in the form of fitness functions), is able to extract, 
within  the  limitations  of  the  representation,  phenotypic 
information common to the landscapes which can be used to 
speed up search through a similar unseen landscape. It is also 
capable  of  extracting  meta-information  regarding  searching 
through these landscapes. 

This algorithm is then put to test on a set of simple landscapes 
satisfying the criterion. The information thus gathered is then 
used  evolve  solution  of  an  unseen  landscape  and  relative 
performance  improvement  is  measured.  The  results  are 
analyzed  and  conclusions  are  drawn  regarding  the 
effectiveness of the algorithm.

1 Introduction
An ordinary Genetic Algorithm[1] (GA) starts with a random initial population 
and evolves it using evolutionary operators such as mutation and crossover till a 
chromosome of required fitness is found. In a GA, it is possible for the scientist 
to optimize his representation and the evolutionary operators defined on it so that 
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the search is biased towards the solution (the field of genetic programming[2]). 
This means that the scientist tries hard to insert non-evolving meta information 
about the fitness landscape into the representation. Here, meta information is any 
information  that  affects  the  probability  of  producing  chromosome  b by 
repeatedly applying evolutionary operators on chromosome a (see [3] for a better 
explanation).

However, the experiment still starts with a random initial population. This means 
that there exists no phenotypic information regarding (the solution of) the fitness 
landscape in the initial population. There appears to be good reason behind it 
since  to  manually  insert  phenotypic  information  into  the  initial  population is 
equivalent  to  making  the  search  faster  by  solving  a  part  of  the  problem in 
advance, manually. It clearly defeats the purpose of using computers to evolve 
the solution.

Sometimes, a scientist may be interested in only a small domain of problems. It 
might  be  possible  that  the  fitness  landscapes  of  these  problems  are  similar. 
Similarity between two fitness landscapes depend upon the landscapes and the 
representation. It can be defined in two ways. In the simple case, if the solutions 
to the fitness landscapes have common portions in this representation, then the 
fitness landscapes can be said to be similar. However, in the hard case, they can 
be said to be similar (to a relatively lower degree) even if certain portions of the 
solution share biases (see Section 6).

Now, while it may be difficult to manually find phenotypic information, it might 
not  be  too  hard  to  create  a  representative  set  of  fitness  landscapes  from the 
domain of interest. Let us consider a situation in which we have available a set of 
similar fitness landscapes F={F1, ... , Fn}  over the same representation. We are 
interested in searching through an unknown similar fitness landscape U . 

In this case, it might be possible to extract this common  invariant information 
from the set of know fitness landscapes and use it in the initial population of the 
unknown landscape to achieve speedup.

In addition, consider the case where the evolutionary algorithm being used is 
able to force the chromosome to optimize meta information that it is capable of 
storing. Optimizing of the meta information improves the speed of search. If we 
are able to use this optimized meta information in the initial population, search 
performance might improve further.

We propose a simple algorithm called the Island Algorithm which given a set of 
similar landscapes F  is capable of using any ordinary evolutionary algorithm as 
a sub-algorithm and extract if possible, phenotypic and meta information about 
F  and use it to speed up search through an unknown landscape similar to those 

in F .

Further, we experiment with the island algorithm with GA as the sub-algorithm 
by applying it on a simple  F  on a simple representation with some evolvable 
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meta information. We then use the information gathered in the initial population 
and measure speed up achieved.

2 Island Algorithm
Given : E sub-algorithm 

F set of n fitness landscapes

R Representation

1. Create  n empty,  populations (islands) and store them in  I.  Mark them 
inactive.

2. Mark  some  of  the  islands  active  and  initialize  them  with  random 
members of R.

3. Do till stopping condition (usually just loop count)

1. For each active  I i  in  I, do  E on members  I i  with fitness function 
F i  until solution is found.

2. P=∑i

n
I i  (add all members of the (active) islands to P).

3. Remove the population of some islands and mark them inactive.

4. Activate some inactive islands. To fill them with chromosomes, select 
parents from P (instead of random population).

4. Perform any information extraction procedure necessary on P (usually P 
will be used as starting population).

Here,  at  all  times,  inactive  islands  will  be  empty  and  no  evolution  will  be 
performed on them. At all times at least some of the islands will be active.

3 Experimental Setup

Sub-Algorithm
To run the island algorithm a sub-algorithm is needed.  We chose the standard 
GA  as  the  sub-algorithm.  The  detailed  configuration  of  the  GA  is  given  in 
Appendix A.

Representation
The chromosome was chosen as a sequence of real numbers which act as genes. 
In  addition,  each  gene  in  the  sequence  was  associated  with  a  real  number 
denoting the probability of this gene being mutated. These real numbers were 
chosen  from the  fixed set  {.0001,  .0005,  .0025,  .0125,  .0625,  .1,  .3125}  for 
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simplicity. The evolutionary operators on this chromosome were mutation and 
crossover.

Mutation  started  with  first  deciding  whether  to  mutate  mutation  rates  or  the 
genes.  If  the  mutation  probabilities  were  to be  mutated,  then each  gene was 
individually chosen for mutation based on a meta-mutation probability. If chosen 
its mutation probability was randomly either incremented or decremented to the 
nearest  larger  or smaller  value respectively from the set  of possible  mutation 
probabilities.

If the gene values were to be mutated, it involved two steps. In the first step, a 
gene was chosen with probability proportional to the mutation probability. The 
value of this gene was mutated using a Gaussian function. In the second step, for 
each gene, based on its mutation probability, a decision was made whether to 
mutate it or not. Mutation was performed as before. This ensures that at least one 
gene mutates if the mutation function is called.

Crossover is the standard 1-point crossover  [1]. The only extension is that the 
mutation probabilities are also crossed over along with the genes.

For this experiment, the length of the chromosome was 9.

Set of Fitness Functions
To  keep  things  simple  and  run-times  low,  a  simple  hill  climbing  fitness 
landscape was needed. We used number-match fitness landscape which gave the 
hamming distance of the chromosome to a predefined target sequence.

The set of fitness functions consisted of number-match landscapes with different 
target sequences. However, all the target sequences shared the first six values. 
They differed only in the last three. The last three values were selected randomly 
at the beginning of the experiment from the range [-10,10].

Island Algorithm Settings
The island algorithm used 8 islands. At any time, exactly 3 was active. For easy 
book keeping, instead of changing islands every time they solved, it was done 
every 100 generations of the sub-algorithm. During every island changing step, 
exactly 2 islands were chosen for deactivation from the active 3 islands. Then, 
exactly 2 islands were chosen for reactivation. Each Island had a population of 
30.

4 Experiments and Results

Case 1: As described
When the algorithm was run as described in section 3, it was noted that island 
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algorithm easily detected the similarity among all  the first 6 values of all the 
evaluators. The population mostly differed only on the last 3 values. However, 
the meta information was not  as good as hoped. Over successive runs, we found 
that there was only a small tendency for the first six genes to have low mutation 
probabilities and the last three to have relatively higher mutation probabilities. 
The  distribution  improved  if  the  meta-mutation  probability  was  increased. 
However, increasing of the meta-mutation probability reduces the influence of 
the mutating probabilities of the final population on the performance over the 
unknown fitness landscape. If the values were reduced, and the loop-count at 
step 3 set to large values, still the results produced were inconclusive. 

Thus, we concluded that the selection pressure applied by the sub-algorithm (GA 
in this case) towards optimizing the meta-information in the chromosome is not 
strong enough to be able  to  use  the  meta-information  directly  from the  final 
population.

Case 2: Modified Chromosome and meta-information extraction
To make the effect of selection pressure of GA more prominent, instead of using 
a mutation parameter for each gene in the chromosome, only two were used. One 
for the first six and the other for the last three. The idea is the since now there are 
lesser  values to  optimize,  they might  converge better.  In  addition,  instead of 
using only these values from the final population, a counter was kept for each 
possible mutation probability value for both the probabilities. This is sufficient to 
give  the  complete  distribution  of  values  chosen  during  the  entire  island 
algorithm.

We also kept  track of the number of generations an island spent looking for 
solution. This was done by cumulatively counting the number of islands which 
found solution at every generation of the GA. From this statistic, we find that on 
average, an island spends 38 generations looking for solution. Note that there are 
3 islands and thus a population of 3 * 30 = 90.

The statistics gathered about the mutation value frequencies are in Table 1.

Mutation Value 0.0001 0.0005 0.0025 0.0125 0.0625 0.1000 0.3125

First-six mut. prob. 6807180 7670765 6054676 3891171 2565015 801005 110095

Last-three mut. prob. 3946 225120 421069 1912844 7466354 6853528 11017046

Table 1: Mutation probability frequencies

Already we can see that first-six spent more time on lower values while last-three 
spend more time on higher values. When we take a weighted sum of the mutation 
rates, we get,

First-six = 0.0123472541

Last-three = 0.170524441
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Testing: Standard GA with random initial population
Next,  we change the island population size to 90 and total  island count to 1 
simulating  a  single  GA  run.  We  remove  the  meta-information  from  the 
chromosome. Gene mutation probability is set to a fixed .1. We start with initial 
random  population  and  do  10  runs.  We  find  that  the  average  number  of 
generations needed to find a solution is 126.7.

Testing: Standard GA with phenotypic information
Here, instead of using initial random population, we use the champion from case 
2 having removed the meta-information. Doing 10 runs, we find that the average 
number  of  generations  needed  is  45.8.  This  amounts  to  an  improvement  of 
176%.

Testing: Standard GA with phenotypic and meta-information
Here, we add the meta-information back to the chromosomes. Also, we initialize 
the  meta  information  with  the  values  calculated  in  case  2.  Also,  the  meta-
mutation  probability  is  set  to  0  to  take  full  advantage  of  this  mutation 
probabilities. We find after 10 runs that the new average number of generations 
needed  is  34.3.  This  is  33% increase  over  phenotypic  information  only  and 
270% improvement over standard GA.

Figure 1: Performance in Test Experiments

5 Conclusion
We explain how a scientist while optimizing meta information about the search 
space embedded in the representation's bias, is unable to find and use phenotypic 
information about the solution.
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It is suggested that given a set of similar fitness landscapes, we might be able to 
find  common  phenotypic  information  automatically  which  could  be  used  to 
speed up search for the solution of a similar landscape. 

An algorithm is then suggested which uses an existing evolutionary algorithm to 
find this common phenotypic information and any meta-information about the 
landscape that can be extracted. This algorithm is then applied to a simple case 
that satisfies the requirements. The information gathered is then used in a GA 
and performances are compared.

It  is  found that  in  this  application  of  Island  algorithm with  GA as  the  sub-
algorithm, we get notable performance improvement over standard GA. However 
note that the exact values of improvement are of no consequence as they can 
easily manipulated to a large extent simply by changing the parameters of the 
experiment. 

What is important is that given a set of similar fitness landscapes, the algorithm 
managed to extract some phenotypic and meta information. The increase in other 
domains too would largely depend upon the representation used, the similarity of 
the fitness functions, the quality and quantity of selection pressure applied by the 
sub-algorithm etc.

6 Disadvantages and Future Work
Find an algorithm which applies more selection pressure than the standard GA 
on optimizing meta information and integrate this new algorithm into the island 
algorithm.  Since  the  island  algorithm  maintains  the  population  between 
successes, enhance the meta information by using this repetitive-success. This is 
like  using  hindsight  to  make  better  decisions.  Hindsight  information  is  only 
available if success is achieved at least once which makes it impossible to use it 
in an ordinary evolutionary algorithm.

The island algorithm also needs to be tested on a more difficult set of fitness 
landscapes with less intuitive invariant information.

The island algorithm as such is able to detect common phenotypic information 
only if they are the same. If they are only close, say in the range of 4 to 6, the 
algorithm will not decide on 5 which is the optimal phenotypic information. It 
will  instead present the last  seen value. This  means that  the island algorithm 
requires  F to satisfy the simple similarity requirement. It is to avoid this “last-
seen” effect that the island algorithm has multiple islands active at a time. But as 
such  they  alone  are  insufficient  to  encourage  such  optimal  behavior.  Thus, 
modifications  must  be  researched  to  enable  it  to  extract  optimal  phenotypic 
information  even  with  different  but  similarly  biased  values.  In  other  words, 
enable  it  to  extract  phenotypic  information  even  if  F satisfies  only  the  hard 
similarity requirement.

At  the  moment,  the  island algorithm can only work with  representation with 
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fixed length. This means that the dimensions are named. The algorithm needs to 
be improved to handle unnamed dimensions.

7 Appendix A – GA (Sub-Algorithm) Configuration
Population size 30 (Island size)

Selection criterion Tournament (k = 2)

Probability of mutating 1 (Every member has been mutated)

Probability of crossover 1 (Every member is product of crossover)

Mutation type Gaussian (σ = .1)

Elitism None
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ABSTRACT 
In this paper we discuss the work done in the field of optimal 
design and rehabilitation of water distribution networks (WDNs) 
using evolutionary computation (EC). WDNs form a vital part of 
infrastructure, constructed to satisfy water demand at 
consumption points (nodes). The system must also satisfy 
pressure requirements at the given nodes. With the passage of 
time the existing WDNs will degrade in performance and need to 
be rehabilitated. With growth in demand new WDNs become 
necessary and old ones need to be extended. Conventionally the 
design of new WDNs or the up gradation of the existing ones had 
been done on the basis of engineering judgment. Though the 
requirement of engineering judgment is still essential, new 
computation tools augment the work of the engineers to a great 
extent. Optimizing the WDNs is not a small task, as the 
complexities are many and effort is always on to find new 
algorithms to optimize the design or rehabilitation work. Here we 
will be specifically discussing the use of evolutionary algorithms 
(EA) that have been used in the field to augment the engineer. 
The discussion presented here is a qualitative comparison. 

Note: The references list contains only those that are cited in 
the text, numbered in the order in which they are first cited.  

Keywords 
Water distribution networks, evolutionary algorithms, cost 
minimization, reliability maximization.  

1. INTRODUCTION 
WDNs form a vital part of infrastructure, constructed to satisfy 
water demand at consumption points called nodes. The system 
must also satisfy pressure requirements at the given nodes. With 
the passage of time the existing WDNs will degrade in 
performance and need to be rehabilitated. With growth in demand 
new WDNs become necessary and old ones need to be extended. 
Conventionally the design of new WDNs or the up gradation of 
the existing ones had been done on the basis of engineering 
judgment. Though the requirement of engineering judgment is 
still essential, new computation tools augment the work of the 
engineers to a great extent. Optimizing the WDNs is not a small 
task, as the complexities are many and effort is always on to find 
new algorithms to optimize the design or rehabilitation work. 

Earlier traditional optimization methods were used for the 
purpose, but problems like handling of discrete decision variables, 
getting trapped in local optima led researchers to the use of EAs. 
The EAs can handle not only discrete variable optimization but 
are also capable of not falling at deceptive points. They are robust 
and can explore the entire search space in lesser time than any 
traditional optimization or search process. The late 1990’s saw the 
use of EAs in the field of water resources engineering and since 
then various EAs have been tried and tested successfully.  

 In section 2 we will be discussing about the uncertainties and 
what objective functions are sought to be optimized in any water 
distribution network design problem. Section 3 will be dedicated 
to the discussion of why EAs are better at handling the problem 
than the earlier methods.  Section 4 will include the discussion the 
various EAs used. Section 5 will be the conclusion.    

2. UNCERTAINTIES AND THE 
OBJECTIVE FUNCTIONS 
A typical WDN consists of pipes laid out, with constraints of 
existing roadways and buildings. Finding the shortest path to a 
certain node from the source of water is not always possible and 
is actually never the goal. The aim is more or less always to find 
the least cost design [1] layout keeping in view the demand at all 
the points. The pressure demands through out the system have to 
be maintained also. And also not forget we have the crucial 
uncertainties [2, 3]. The uncertainties are generally of the 
following types: 1) hydraulic uncertainty, 2) mechanical 
uncertainty, 3) demand uncertainty and 4) hydrologic uncertainty. 
Hydraulic uncertainty pertains to demands not being met at 
certain nodes because of the long distance from the source or 
being at a higher elevation than the source. Though we cannot do 
much about the source of the water but we can definitely take 
action in the form of putting in pumps at the right places. So that 
the when the pressure drops significantly at places due its location 
or distance, we can ensure reliability. Due to hydraulic 
uncertainty though the demand is satisfied at all times, some of 
the nodes are not served. Mechanical uncertainty could arise due 
to any sort of mechanical failure in the system like the breakage 
of pipes, bursting of valves or breakdown of pumps. Mechanical 
uncertainty leads to the condition in which demand is satisfied at 
all nodes but not at all the times. Demand uncertainty rises due to 
various causes like sudden rise in the population of a particular 
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region which is in turn related to increase in business in that 
particular region. This could also be if the forecast has not been 
very properly modeled. Hydrologic uncertainties are owing to 
problems at the source of the water, e.g. less than average rainfall 
can lead to a reduced amount of water available in the dry period. 
Though supply can be available at all times to all nodes but the 
demand will not be satisfied. So keeping in mind that we have 
these kinds of uncertainties plaguing us all the time for which we 
have limited control, the design or the rehabilitation work should 
be able to take into account the above mentioned uncertainties 
and make the system reliable. Resilience [4] is the ability of the 
system to come back to its normal state after a momentary or brief 
departure. So network resilience [5] could be a good measure of 
the reliability of the system, which is one of our objectives. But 
since WDNs are expensive infrastructure, the finding of a least 
cost design is but an inevitable objective for most of the cases 
under study. While optimizing these objective functions the usual 
equations of the conservation of flow and energy has to be 
satisfied. The flow equation to be satisfied is that the difference in 
the amount of water flowing into a node from nearby links and 
the amount of water going away from the node is equal to the 
demand at the particular node. The pressure constraint that has to 
be satisfied is that there must be a minimum pressure head at the 
node. A pressure violation is said to occur when the pressure 
drops below the minimum.  

3. WHY EVOLUTIONARY 
ALGORITHMS? 
Traditional optimization methods have earlier been used for the 
design of WDNs before the use of evolutionary algorithms 
became popular. And with the advent of faster computers 
intensive computations was no longer an issue to be considered. 
But the old methods of optimization had some serious drawbacks. 
The system under consideration is non-linear and the old 
techniques rely heavily on linear simplification, which though 
makes the calculation simpler leads to unacceptable results. It also 
assumes that the system is deterministic but where as it is not. In 
the problem at hand diameter of pipes that are to be laid out are 
the decision variables in most cases. Since they are manufactured 
in large numbers and themselves are expensive units, they are 
only produced in certain sizes. In other words the decision 
variables are discrete variables. Old methods could not handle 
discrete variable. They treated the decision variables as 
continuous and the results would always have to be rounded off to 
the closest available discrete pipe size. This can lead to not only 
sub-optimal solutions but also to infeasible solutions. An 
infeasible solution is one where the constraints are violated. When 
multiobjective optimization is attempted multiple solutions cannot 
be found in one run [5]. So we need to have multiple runs for 
obtaining multiple solutions and also there is no guarantee that 
varied solutions will be obtained. Some traditional methods also 
cannot model the use of pumps, valves and storage tanks which 
are very important components of the WDN [6]. 

EAs like genetic algorithm (GA) or memetic algorithm have the 
advantage of being able to handle discrete variables. It does not 
matter whether the system is linear or non-linear. The ability to 
represent solutions which can be mapped to real-life situations, 
play around with the solutions, evaluate them as we go based on 
certain fitness function is the key to the robustness of the GA [7] 
or more generally EA. And single run with enough number of 

generations so as to allow for convergence to take place is 
sufficient to give solutions for multiobjective functions. EAs 
which are stochastic tend to provide better solutions for water 
distribution systems which throw light on the nature of the 
problem itself. They can very efficiently handle pumps, valves 
and storage tanks. They have been proved to have performed 
better than deterministic optimization techniques [8] in the 
optimal design of WDNs.  

But it is also to be noted that EAs are also not great at handling 
constraints. So in all the cases the constraints are solved by an 
external hydraulic network solver [9]. The network solver takes 
solutions evaluated by the EA and then sees if the solution is 
feasible or not. It gives the feedback then back to the EA. This 
feedback is crucial because in most cases a penalty function is 
evaluated based on whether the constraints have been evaluated or 
not. This penalty value is then included in the computation of the 
fitness value of the solution.  

4. EVOLUTIONARY ALGORITHMS USED 
IN THE DESIGN OR REHABILITAION OF 
WATER DISTRIBUTION NETWORKS 
The various EAs that have been used in the given field problem 
will now be discussed. The goal of the project here has been to 
understand the various EAs implemented and how effective they 
have been in comparison to other algorithms. One of the short 
comings that we have observed here is that some researchers 
come up with certain modifications to the simple GA and try to 
beat it down. But in certain cases the authors have tried to 
improve upon modified GA. This is kind of interesting to study as 
it sort of exposes the delicate aspect of the algorithm. Through out 
the study we realized how difficult it is to get a perfect 
optimization technique for a real world problem. In these high 
dimensional problems there is always scope for improving the 
optimization technique and this is precisely what has happened in 
the given cases under study. Researchers have used the simplest 
of the evolutionary algorithms to the relatively more difficult 
concepts of evolution to optimize the networks.  

The various EAs to be discussed in the following subsections are 
the following: 1) Single objective GA, 2) multiobjective GA, 3) 
hybrid GA, 4) messy GA, 5) Ant System Algorithms, 6) Shuffled 
Complex Algorithms.  

The New York City water system and the Hanoi Network are the 
two classical networks in literature. They have been tried and 
tested on each and every type of algorithm discussed in the 
following sections. The use is primarily because they have been 
traditionally benchmark problems. So it makes more sense to 
compare the results of the new algorithms with the older ones. In 
addition to that the complexity of the networks is high but not too 
high. So dealing with these networks gives enough challenge and 
computational ease at the same time.  

4.1 Single objective genetic algorithm  
Most of the initial work of the application of EA in this field has 
been the implementation of the single objective GA. The 
objective most of the time has been to minimize the cost, except 
for few like [10], where reliability is the sole objective to be 
optimized. When the goal is single objective it is argued that 
resulting structure of the WDN will be more tree-like. This could 
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be explained in very simple terms as follows. If we consider 
reliability then that means that we have to have loops in the 
system which will be redundant and will only come into picture 
during the failure conditions and help in the system resilience. But 
if only cost minimization is the goal then those extra loops no 
longer come into the picture and the developed structure is more 
tree-like [1]. The representation has been binary [11] as well as 
real. The problems with the binary representation have been 
discussed by [12] and the researchers have advocated the use of 
the real coding to be used for representation. The binary 
representation is very easy to understand but has the problem of 
the Hamming cliff effect [13]. So some authors have used Gray 
coding [1] instead of the binary code to overcome the problems. 
Real coding sorts out the problem of redundancy associated with 
binary coding. It also allows for more variety of combination and 
mutation operations to be implemented [14]. As mentioned earlier 
a penalty function is included to account for pressure infeasible 
solutions. The fitness function is directly proportional to the 
reliability and is inversely proportional to the cost of the system. 
For reliability maximization problems it has been observed that it 
is better to look at the network reliability rather than critical node 
reliability [10]. In the latter case there is an inherent problem of 
over estimating the network reliability.  

4.2 Multiobjective genetic algorithm  
In a typical implementation of the multiobjective GA in the 
design of WDN, we observe that cost minimization and reliability 
maximization are the two goals. These two goals intuitively tend 
to play against each other. But it has been shown that 
simultaneous optimization of the cost and reliability resulted in 
high quality solutions (Parerto Fronts) and also inclusion of a 
third objective e.g. minimum surplus pressure head also improves 
the solutions [15]. [4] have used non-dominated sorting algorithm 
(NSGA) for optimizing the two objectives. In NSGA a ranking 
method is used to emphasize current non-dominated and a sharing 
parameter is used to maintain diversity in the population. 
Crossover and mutation are carried out. Selection of parents from 
different non-dominated fronts is done by tournament selection. 
SPEA which includes elitism has been shown to perform much 
better than NSGA [16]. The developers of NSGA came up with 
NSGA-II which was an improvement on the original [17]. They 
decreased the complexity, introduced elitism and did away with 
the sharing parameter. This elitist MOEA was tried by [18] on 
two classical literature networks. [19] tried NSGA-II and Strength 
Pareto evolutionary algorithm 2 (SPEA2) on two classical 
networks. They found that though both generated Pareto sets but 
had incomplete solutions, thus were suboptimal. SPEA2 
performed slightly better. The result is interesting as it shows that 
lot of work has to be done to locate optimal Pareto sets for high 
dimensionality objective spaces.   

[20] & [21] have used multiobjective approach for cost 
minimization and energy savings in water supply by improving 
the operations of the pumps. Earlier it was not possible to 
optimize the performance of pumps using traditional optimization 
methods. But as we had mentioned earlier the optimization of 
pumps has been achieved successfully by multiobjective GA.  

4.3 Hybrid genetic algorithm  
The concept of hybrid GA is to use the “best of both worlds”. 
Local search methods are good at converging to optimal solutions 
quickly using the gradient information, but are not able to jump 
around. Thus they get trapped in the local optima [22]. GA on the 
other hand becomes less efficient when they find the near optimal 
solutions. A hybrid GA thus combines a local search with a GA. 
Based on the particular optimization problem under study it is 
decided as to how to combine the both. They are generally 
classified as two methods: the sequential global – local method 
and the embedded global – local method [23]. In the first stage of 
the sequential global – local method the GA is implemented to 
give us the near global optimal solution. Then the local optimizer 
takes the initial estimate and searches for the global optimum in 
the region of the near global solution. The embedded global – 
local method is an iterative process between the search operators 
of the global optimizer and the local optimizer. In some problems 
like in the case of two way pipe flow [23] there are complicating 
variables. The global optimizer is used to take care of the 
complicating variable and then the local optimizer is used to 
resolve the rest.  Convergence to global solution is reached 
through iterations. In both the above methods the solutions are 
achieved much faster than the GA used alone and also results in 
some studies find that they give better solutions than the simple 
GA.  

Now we will be discussing about another type of hybrid GA 
whose foundations is based on a different aspect of GA. GA 
begins with a randomly generate solution set and then after lot of 
generations of fitness evaluations comes up with the best 
solutions. Though a bad start doesn’t imply bad solution, but it 
may affect the optimality. Bad start sometimes hinders the search 
for the global best [24]. This could be because we do not have any 
prior knowledge of the environment and if we could get that 
information before starting the process then it is believed that 
better solutions could be achieved. Cellular Automata (CA) has 
been widely applied to spatially distributed problems like 
simulations of traffic flows. A CA consists of interconnected set 
of nodes that uses certain rules to update the state of the nodes. 
The rules are problem dependent and updates are done in parallel. 
The CA is only concerned with implementation of rules at the 
local level. CA has features like parallelism, localist 
representation and homogeneity [25] and can reach close to 
Pareto optimal solutions in small number of simulations. Then the 
results of the CA can be used to seed some GA e.g. NSGA-II, 
which can reach global optimum [26].  The method is kind of 
reverse of the sequential global – local method. Here the local 
optimizer works first and then the global is used.  

The hybrid GA has been used for both single and multi objective 
functions optimizations.  

4.4 Messy genetic algorithm  
It is based on the concept that the best solution will be found in 
the solution region containing a high proportion of good solutions. 
The simple GA has fixed length strings. The messy GA has 
variable length strings that grow over generations. Not only have 
they grown over generations, but they also have different lengths 
in a given populations giving it a messy look and hence the name. 
This versatile string length is the key to the messy GA [9]. The 
variable length string along with the cut and splice operators helps 
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in identifying good clusters of string bit patterns that are 
contained in good solutions. The genes are identified as a pair of 
gene locus and gene value. Gene locus is the sequential order of a 
gene bit in the full length string. The messy GA imitates the 
evolutionary process in two nested loops. Each cycle in the outer 
loop calls upon an initialization phase and an inner loop that has a 
building block filtering phase and a juxtaposition phase. The 
larger the population size the higher is the chance that all possible 
good building blocks will be present. The building block filtering 
process identifies better fit shorter strings and randomly deletes 
genes and is done till a desirable length is reached. In the 
juxtaposition phase the resulting strings of the building block 
filtering phase are combined to form new strings. The cut and 
splice operators are called during this step and helps in splitting or 
combining strings. The cut probability is higher for string of 
longer length. In the early stages of the juxtaposition phase the 
probability of the splice operator to be called is higher as the 
strings are of shorter lengths. Cut and splice operator when called 
upon to act on two strings of same length in succession may act 
like a crossover operator. So this shows that cut and splice 
operator have more versatility than the standard operators. Due to 
these features of the messy GA they have been found to perform 
better than the fixed length GA in standard networks.  

The structured messy GA used by [27] and [28] partially uses the 
capability of the messy GA. In these the string length grew only 
over the generations so there was no messy population. This 
allowed for the use of the standard crossover and mutation but 
could not use cut and splice operators. So the features which 
made messy GA more powerful were not used. So they could not 
be as efficient as the messy GA.  

The messy GA and the structured messy GA have been used 
typically for cost minimization purpose.  

4.5 Ant system algorithms 
Ant colony optimization (ACO) is a probabilistic optimization 
technique developed for solving computational problems which 
can be reduced to finding good paths through graphs. The ant 
algorithm for discrete optimization was developed by [29]. They 
are inspired by the foraging activity of the ants in finding paths 
from the home to food and back. In the real world ants travel 
randomly and after they find food they return home by laying 
down pheromone trails. Other ants who find the trail will no 
longer travel randomly but instead follow the trail to find food. 
The in turn will also lay pheromone trails thus reinforcing the 
path. The pheromone evaporates with time, so longer paths will 
have reduced attractiveness in comparison of shorter paths. This is 
nature’s own way of preventing stagnation or in other words 
preventing traps at local optima. In ACO the behavior of real ants 
is mimicked with simulated ants. The ACO is nested loop 
algorithm with the outer iteration equivalent to the generation of 
GA. The inner cycle is equivalent of the evaluation of solutions in 
GA. Number of cycles is also the number of ants generated. The 
ACO process is governed by the ground pheromone intensity. 
Since each solution is a trial solution the pheromone is updated 
after each cycle. The iterations or the outer loop continue till a 
stopping criterion is reached. The stopping criterion for the given 
problem at hand is that the demand at all nodes must be satisfied 
at all the times [30]. The ACO was found to be performing better 
than the standard GAs in terms of faster convergence to global 

optimal solution. In the ACO the pheromones are laid on the 
ground and the ants are just to make decisions as to where to go 
next after they reach a certain point. So we see that changes are 
actually made to the environment and thus they become powerful 
optimization tools in dynamically changing problems like the 
WDNs. Rank based updating scheme implemented ACO and Max 
– Min Ant System (MMAS) also appear to perform better than the 
basic ACO [31]. Iteration best Ant System also performs better 
[32]. The authors have also suggested modifications to parameters 
so that performance improves. MMAS have a dynamically 
developing bound on the pheromone trail intensity such that they 
remain within certain limits of the path with the greatest 
pheromone intensity. This gives each path a non-trivial 
probability of being selected and thus allowing greater search 
scope [33].  

Primarily the algorithms have been tested on single objective 
functions, in this case cost minimization.  

4.6 Shuffled complex evolutionary algorithm  
The shuffled complex algorithm starts of with the combination of 
probabilistic and deterministic approaches, evolution of complex 
solutions, competition and complex shuffling. A population is 
randomly generated and is sorted in ascending order. The 
population is then partitioned in to complexes. Each complex is 
allowed to develop independently. Points within a complex 
produce new offspring which then replace the worst fit. The 
points in the evolved complexes are pooled together and then 
shuffled again. This shuffling causes the information to be shared 
among every member [34]. This is memetic evolution. The 
shuffling goes on till a terminating criterion is achieved. The 
criteria could be a pre-specified number of function evaluations or 
could be that the relative change in the function evaluation in the 
last m shuffling loops the value is within a tolerance level. The 
implementation of the above algorithm in WDN performed better 
than simple GA and some other Shuffling Algorithms.  A serious 
disadvantage is that this algorithm cannot handle discrete 
variables.  

Shuffled Frog Leaping Algorithm (SFLA) is very similar with a 
few changes [35]. In the former there was generation of new 
points which replaced some worst fit points. In the latter PSO is 
used for the local search inside a complex and the sorting is dome 
in descending order. Inside the complex in the SFLA the position 
of the worst frog is tried to be improved, where is in the simple 
shuffling algorithm reproduction takes place and the worst fit is 
removed. The SFLA can handle discrete variables.  The algorithm 
is named so after the fact that frogs leap from one stone to other 
in a pond to get to the food and they communicate with each other 
to get the information about food. When the local performance 
cannot be further improved the complex shuffle. The process of 
shuffling is analogous to the set of cultures that were working 
isolated and now meeting and exchanging ideas. Stopping criteria 
are same as the simple shuffled algorithm. SFLA was found to 
perform better than traditional optimization techniques.  

Shuffled complex algorithms have been used as single objective 
function optimizer in the WDNs design.  
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5. CONCLUSION 
So far as we have studied the broad categories of EAs that have 
been used in the design of WDNs and realized that all of them 
have improved the design and search for the optimal solution. A 
quantitative comparison is beyond the scope of this work as it is a 
literature review. Since WDNs are costly infrastructures 
minimizing the cost is a by default objective. Apart from that 
maximizing the network reliability has been a major goal. 
Operation work like pump scheduling sometimes come up as an 
objective, but very rarely. Water quality as an objective also 
appears but again rarely. Single objective GA and multi-objective 
GA are the ones most commonly used as hey have been tried ad 
tested for longer period of time than others. The use of messy GA 
for serious optimization purpose has gained in recent years not 
only in the design of WDNs but also in other vast areas of applied 
GA. Messy GA with their variable string length feature and use of 
operators like cut and splice have lead to faster convergence in 
solutions. Based on the concept that global best solution will be 
found near the neighborhood of the region of relatively higher 
proportion of good solutions, the messy GA have proved very 
effective. Hybrid GA gives us the unique capability of using the 
best of both the local and the global search optimizers for the 
purpose of converging to the best global solution. The hybrid GA 
is useful in optimizing water quality and cost. Ant system 
algorithms have taken ideas from ants’ foraging activity and have 
been shown to be very useful in the design of WDNs. The ant 
system algorithms make changes in the environment and not in 
the trial solutions itself. This makes it useful to tackle 
dynamically changing environments. This permits the researcher 
to model occurrences like real time pipe breakage or pump failure 
much easier. The ant algorithms used here are especially designed 
for discrete optimization. Shuffled complex algorithms though 
have proved to be efficient, yet they have not been used that 
extensively.  
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