This dataset contains images of clothing items while each image is labeled with 50 categories and annotated with 1000 attributes, bounding box and clothing landmarks in different poses. Four datasets are developed according to the DeepFashion dataset including Attribute Prediction, Consumer-to-shop Clothes Retrieval, In-shop Clothes Retrieval and Landmark Detection in which only Attribute Prediction is available without password requests. All the other datasets mentioned need to request for a password to unzip the data files and the access would be available after signing an Agreement. All these datasets are available for academic research and any commercial use is prohibited. More details about the datasets and download instructions can be found on Attribute Prediction dataset which contains 289,222 number of images, can be downloaded from

In-shop-Clothes Retrieval dataset which contains 7,982 images can be downloaded from

Consumer-to-shop Clothes dataset which contains 33,881 number of images, can be downloaded from

Finally, Fashion Landmark Detection dataset which contains 123,016 number of images, can be downloaded from

Here is some information regarding the DeepFashion dataset:

  • Number of images in the dataset: More than 800,000 (60,000 images for the training set and 10,000 images for the test set)

  • Number of classes: 50 categories

If you use this dataset:

Make sure to follow the Terms of Use according to the Agreement about the datasets and use the data for academic research purposes only.

Make sure to cite the papers:

Z. Liu, P. Luo. S. Qiu, X. Wang, X. Tang, Powering Robust Clothes Recognition and Retrieval with Rich Anotations, Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016.

Z. Liu, S. Yan, P. Luo, X. Wang, X. Tang, Fashion Landmark Detection In The Wild, European Conference on Computer Vision (ECCV), 2016.

Keywords: VisionImage, Classification, Fashion, Clothes Recognition, Clothes Detection